首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5416篇
  免费   211篇
  国内免费   46篇
化学   3798篇
晶体学   45篇
力学   113篇
综合类   1篇
数学   457篇
物理学   1259篇
  2024年   12篇
  2023年   32篇
  2022年   58篇
  2021年   119篇
  2020年   109篇
  2019年   146篇
  2018年   81篇
  2017年   67篇
  2016年   188篇
  2015年   167篇
  2014年   212篇
  2013年   319篇
  2012年   349篇
  2011年   394篇
  2010年   259篇
  2009年   226篇
  2008年   324篇
  2007年   280篇
  2006年   273篇
  2005年   280篇
  2004年   231篇
  2003年   209篇
  2002年   190篇
  2001年   120篇
  2000年   107篇
  1999年   58篇
  1998年   45篇
  1997年   56篇
  1996年   68篇
  1995年   45篇
  1994年   45篇
  1993年   60篇
  1992年   47篇
  1991年   40篇
  1990年   40篇
  1989年   49篇
  1988年   28篇
  1987年   26篇
  1986年   31篇
  1985年   29篇
  1984年   21篇
  1983年   17篇
  1982年   19篇
  1981年   28篇
  1980年   15篇
  1979年   18篇
  1977年   19篇
  1976年   19篇
  1975年   12篇
  1974年   19篇
排序方式: 共有5673条查询结果,搜索用时 46 毫秒
181.
    
Journal of Radioanalytical and Nuclear Chemistry - To keep the accredited category for the gamma spectrometry test in our laboratory, the efficiency curves of a HPGe detector for soil sample in...  相似文献   
182.
CeF3 and CeF3:Tb3+ nanocrystals were successfully synthesized through a facile and effective polyol-mediated route with ethylene glycol (EG) as solvent. Various experimental techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) spectra as well as decay dynamics were used to characterize the samples. The results indicated that the content of NH4F and reactant concentrations were key factors in the product shape and size. Excessive NH4F was necessary for the formation of hexagonal nanoplates. The specific morphology of product can be controlled by changing the NH4F content and reactant concentrations. In addition, Tb3+ doped-CeF3 sample shows strong green emission centered at 544 nm corresponding to the 5D4-7F5 transition of Tb3+. Due to the decrease of nonradiative decay rate, the lifetime of 5D4 level of Tb3+ become longer gradually upon increasing the size of product.  相似文献   
183.
We reported on two polymer semiconducting copolymers based on porphyrin compounds, poly[9,9-dioctylfluorene-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PFPor) and poly[9-(heptadecan-9-yl)carbazole-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PCPor), for use as organic photovoltaic materials. The thermal, optical, electrochemical, and photovoltaic properties of the two polymers were investigated. In addition, PC61BM and PC71BM were introduced as acceptor materials to confirm the acceptor effect in bulk heterojunction photovoltaic devices. Moreover, in order to establish acceptor effects, morphologies of polymer/PCBM blend films were analyzed through atomic force microscopy (AFM). PFPor and PCPor exhibited the best device performance with power conversion efficiencies (PCE) of 0.62% and 0.76%, respectively, upon the introduction of PC71BM as the acceptor in the device where 86 wt.% of the PC71BM was contained in the active layer (pol:PC71BM = 1:6, w/w).  相似文献   
184.
Oxy-fluorination of carbon preforms with various F2:O2 gas mixtures were examined to improve the mechanical and thermal properties of carbon fiber-reinforced carbon composites (C/C composites). The oxy-fluorination of the preforms introduced functional groups onto the preform surface, which improved their thermal properties. Oxy-fluorination also improved the interfacial adhesion of the C/C composites, resulting in increased flexural strength and anti-oxidation. Two synergistic effects of oxy-fluorination on the carbon preform are suggested. One optimizes interfacial adhesion by forming hard chemical bonds and soft electrophilic bonds between the surface functional groups of the oxy-fluorinated carbon preforms and the functional groups of the carbon precursors. The other improves anti-oxidation of the C/C composites by improving the thermal properties of the carbon preform itself and interfacial adhesion which resulted in reducing pores, voids, and interfacial cracks.  相似文献   
185.
The microRNA, miR-141, is a promising biomarker for prostate cancer. We implement here a two-step sensing platform for the sensitive detection of miR-141. The first step involves the use of semiconductor CdSe/ZnS quantum dots (QDs) modified by FRET quencher-functionalized nucleic acids, that include the recognition sequence for miR-141 and a telomerase primer sequence for the second step of the analytical platform. Subjecting the probe-modified QDs to miR-141, in the presence of duplex specific nuclease, DSN, leads to the formation of a miR-141/probe duplex and to its DSN-mediated cleavage, while regenerating the miR-141. The DSN-induced cleavage of the quencher units leads to the activation of the fluorescence of the QDs, thus allowing the optical detection of miR-141 with a sensitivity corresponding to 1.0 × 10–12 M. The nucleic acid residues associated with the QDs after cleavage of the probe nucleic acids by DSN act as primers for telomerase. The subsequent telomerase/dNTPs-stimulated elongation of the primer units forms G-quadruplex telomer chains. Incorporation of hemin in the resulting G-quadruplex telomer chains yields horseradish peroxidase-mimicking DNAzyme units, that catalyze the generation of chemiluminescence in the presence of luminol/H2O2. The resulting chemiluminescence intensities provide a readout signal for miR-141, DL = 2.8 × 10–13 M. The first step of the sensing platform is non-selective toward miR-141 and the resulting fluorescence may be considered only as an indicator for the existence of miR-141. The second step in the sensing protocol, involving telomerase, provides a selective chemiluminescence signal for the existence of miR-141. The two-step sensing platform is implemented for the analysis of miR-141 in serum samples from healthy individuals and prostate cancer carriers. Impressive discrimination between healthy individuals and prostate cancer carriers is demonstrated.  相似文献   
186.
The awareness of symptoms of global warming and its seriousness urges the development of technologies to reduce greenhouse gas emissions. Carbon dioxide (CO(2)) is a representative greenhouse gas, and numerous methods to capture and storage CO(2) have been considered. Recently, the technology to remove high-temperature CO(2) by sorption has received lots of attention. In this study, hydrotalcite, which has been known to have CO(2) sorption capability at high temperature, was impregnated with K(2)CO(3) to enhance CO(2) sorption uptake, and the mechanism of CO(2) sorption enhancement on K(2)CO(3)-promoted hydrotalcite was investigated. Thermogravimetric analysis was used to measure equilibrium CO(2) sorption uptake and to estimate CO(2) sorption kinetics. The analyses based on N(2) gas physisorption, X-ray diffractometry, Fourier transform infrared spectrometry, Raman spectrometry, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were carried out to elucidate the characteristics of sorbents and the mechanism of enhanced CO(2) sorption. The equilibrium CO(2) sorption uptake on hydrotalcite could be increased up to 10 times by impregnation with K(2)CO(3), and there was an optimal amount of K(2)CO(3) for a maximum equilibrium CO(2) sorption uptake. In the K(2)CO(3)-promoted hydrotalcite, K(2)CO(3) was incorporated without changing the structure of hydrotalcite and it was thermally stabilized, resulting in the enhanced equilibrium CO(2) sorption uptake and fast CO(2) sorption kinetics.  相似文献   
187.
The dispersion of Nafion ionomer particles and Pt/C catalyst aggregates in liquid media was studied using both ultra-small-angle X-ray scattering (USAXS) and cryogenic TEM. A systematic approach was taken to study first the dispersion of each component (i.e., ionomer particles and Pt/C aggregates), then the combination of the components, and last the catalyst ink. Multiple-level curve fitting was used to extract the particle size, size distribution, and geometry of the Pt/C aggregates and the Nafion particles in liquid media from the scattering data. The results suggest that the particle size, size distribution, and geometry are not uniform throughout the systems but rather vary significantly. It was found that the interaction of each component (i.e., the Nafion ionomer particles and the Pt/C aggregates) occurs in the dispersion. Cryogenic TEM was used to observe the size and geometry of the particles in liquid directly and to validate the scattering results. The TEM results showed excellent agreement.  相似文献   
188.
Self-assembled monolayers (SAMs) can decorate surfaces with `smart′ functional units possessing reversible stimulus-response behavior for optical, thermal, magnetic or redox-chemical stimuli. An independent performance of individual functional groups in such a film is desirable, which can be, in particular, ensured by fairly large lateral separations between tailgroups in the SAM. Adsorbate molecules with multiple attachment points are very promising in this context owing to their large surface footprint, which covers a surface area exceeding the lateral dimensions of the functional groups. To address these design constraints, novel tridentate long-chain tripodal thioether ligands with central adamantine units and a redox-active ferrocenyl tailgroup, 1-[4-(ferrocenylethynyl)phenyl]-3,5,7-tri[(4-n-octylsulfanyl)phenyl]adamantine (T8) and 1-[4-(ferrocenylethynyl)phenyl]-3,5,7-tri[(4-n-dodecylsulfanyl)phenyl]adamantine (T12), were synthesized and used as tripodal adsorbate molecules for the fabrication of redox-active ferrocenyl-terminated SAMs on Au(111). These SAMs were characterized by X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and sum frequency generation spectroscopy. The data suggest that T8 and T12 form almost contamination-free, well-aligned and fairly densely-packed SAMs on Au(111) with laterally separated ferrocenyl units. The SAMs show a homogeneous binding chemistry, an important requirement for high fidelity SAMs. SFG results indicate lateral interactions between neighboring molecules via the long-chain binding units.  相似文献   
189.
This paper reviews several pK a calculation strategies that are commonly used in aqueous acidity predictions. Among those investigated were the direct or absolute method, the proton exchange scheme, and the hybrid cluster–continuum (Pliego and Riveros) and implicit–explicit (Kelly, Cramer and Truhlar) models. Additionally, these protocols are applied in the pK a calculation of 55 neutral organic and inorganic acids in conjunction with various solvent models, including the CPCM-UAKS/UAHF, IPCM, SM6 and COSMO-RS, with a view to identifying a universal approach for accurate pK a predictions. The results indicate that the direct method is unsuitable for general pK a calculations, although moderately accurate results (MAD <3 units) are possible for certain classes of acids, depending on the choice of solvent model. The proton exchange scheme generally delivers good results (MAD <2 units), with CPCM-UAKS giving the best performance. Furthermore, the sensitivity of this approach to the choice of reference acid can be substantially lessened if the solvation energies for ionic species are calculated via the IPCM cluster–continuum approach. Reference-independent hybrid approaches that include explicit water molecules can potentially give reasonably accurate values (MAD generally ~2 units) depending on the solvent model and the number of explicit water molecules added.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号