首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1630篇
  免费   31篇
  国内免费   10篇
化学   1233篇
晶体学   33篇
力学   31篇
数学   109篇
物理学   265篇
  2023年   6篇
  2021年   6篇
  2020年   14篇
  2019年   28篇
  2018年   19篇
  2017年   14篇
  2016年   28篇
  2015年   33篇
  2014年   38篇
  2013年   96篇
  2012年   92篇
  2011年   108篇
  2010年   56篇
  2009年   71篇
  2008年   90篇
  2007年   88篇
  2006年   91篇
  2005年   90篇
  2004年   99篇
  2003年   90篇
  2002年   72篇
  2001年   27篇
  2000年   21篇
  1999年   17篇
  1998年   23篇
  1997年   25篇
  1996年   28篇
  1995年   17篇
  1994年   8篇
  1993年   8篇
  1992年   11篇
  1991年   17篇
  1990年   17篇
  1989年   16篇
  1988年   13篇
  1987年   16篇
  1986年   9篇
  1985年   24篇
  1984年   10篇
  1983年   9篇
  1982年   6篇
  1981年   13篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1977年   13篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
  1973年   9篇
排序方式: 共有1671条查询结果,搜索用时 15 毫秒
51.
The monomer and intermolecular charge-transfer complexes of 13 different quinoline derivatives with diiodine were studied using ab initio molecular orbital (MO) and density functional theory (DFT) methods. Calculations revealed that the sigma* orbital of iodine interacts with the nitrogen lone pair in the quinoline ring. The open-circuit photovoltage (V(oc)) values of an Ru(II) complex dye-sensitized nanocrystalline TiO(2) solar cell with an I(-)/I(3) (-) redox electrolyte in acetonitrile using quinoline additives were compared to the computational calculations on the intermolecular interaction between quinolines and I(2). The optimized geometries, frequency analyses, Mulliken population analyses, natural bond orbital (NBO) analyses, and interaction energies indicate that the V(oc) value of the solar cell is higher when quinoline complexes more favorably interact with I(2). Therefore, the interaction between the quinoline additives and iodine redox electrolyte is an important factor for controlling dye-sensitized solar cell performance.  相似文献   
52.
We have developed a zymogen-based electrochemical sensor. Zymogen is an inactive enzyme precursor (proenzyme) and it is necessary to transform it biochemically (e.g., by hydrolysis and conformational change) to make it an active enzyme. In this study, we demonstrated the detection of endotoxin by using recombinant Factor C (rFC), which is a protease zymogen activated by endotoxin binding. The activated rFC hydrolyzes a synthetic substrate of Boc-Val-Pro-Arg-p-nitroanilnide to generate an electrochemical active compound, p-nitroaniline (pNA). The liberated pNA was detected by differential pulse voltammetry at –0.75 V. By using this electrochemical process, 5000 endotoxin units (EU) L?1 and 1000 EU L?1 were detected in a Tris-Ac buffer with a pH of 7.5 at 37 °C for reaction times of 1 h and 3 h, respectively. The concept of zymogen-based electrochemical sensors is expected to lead to the development of new biosensors.  相似文献   
53.
The objective of this study is to estimate the contribution of Na+ as a counterion in the formation of H-AOT&Na-AOT-based W/O microemulsions using aqueous NaOH solution by pyranine absorbance measurements. A mixture of an aqueous NaOH solution containing pyranine/H-AOT&Na-AOT/isooctane was emulsified by changing the mixing ratio of Na-AOT (XNa-AOT = 0–1) and the mole fraction of NaOH (XNaOH = [NaOH]/the AOT concentration in the water pool = 0–1). The phase behavior of the emulsified mixture was evaluated from the absorbance of pyranine at the isosbestic point and by visual observations. W/O microelumsions are formed at the mid-range of XNa-AOT, whereas the emulsified mixture separates into two phases at lower XNa-AOT and higher XNa-AOT. The two phase boundaries shift toward lower XNa-AOT as with increasing XNaOH. The phase behavior depends on the degree of screening of electrostatic repulsions between the polar headgroups of AOT by the Na+ counterion. Interestingly, nano-sized W/O microemulsions are formed without phase separation using a highly concentrated NaOH aqueous solution when the Na-AOT mixing ratio is appropriately adjusted. The phase behavior was plotted as XNaOH versus XNa-AOT, and the correlation equations for the two phase boundaries were obtained by fitting the points. The contribution of the Na+ counterion from NaOH to W/O microemulsion formation was estimated by the correlation equations. The absorbance of pyranine and the size of W/O microemulsions, as measured by DLS, were plotted as a function of XNa+=(x[Na+   from   NaOH]+[Na+   from   Na-AOT])/[AOT], in which x is the ratio contributed by NaOH. The absorbance and size correlates well with XNa+, indicating that XNa+ is a meaningful parameter for quantitatively estimating phase behavior and size variation.  相似文献   
54.
Heterogeneous self-assembly of thiacalix[4]arene-p-tetrasulfonate (TCAS), Ag(I), and Ln(III) (= Nd(III), Yb(III)) in aqueous solutions conveniently afforded ternary complexes emitting Ln(III)-centered luminescence in the near-infrared (NIR) region. A solution-state study revealed that the Ag(I)-Nd(III)-TCAS system gave a complex Ag(I)(4)·Nd(III)·TCAS(2) in a wide pH range of 6-12. In contrast, the Ag(I)-Yb(III)-TCAS system gave Ag(I)(2)·Yb(III)(2)·TCAS(2) at a pH of around 6 and Ag(I)(2)·Yb(III)·TCAS(2) at a pH of approximately 9.5. The structures of the Yb(III) complexes were proposed based on comparison with known Ag(I)-Tb(III)-TCAS complexes that show the same self-assembly behavior. In Ag(I)(2)·Yb(III)(2)·TCAS(2), two TCAS ligands sandwiched a cyclic array of a Ag(I)-Ag(I)-Yb(III)-Yb(III) core. In Ag(I)(2)·Yb(III)·TCAS(2), Yb(III) was accommodated in an O(8) cube consisting of eight phenolate O(-) groups from two TCAS ligands linked by two S-Ag-S linkages. Crystallographic analysis of Ag(I)(4)·Nd(III)·TCAS(2) revealed that the structure was similar to Ag(I)(2)·Yb(III)·TCAS(2) but that it had four instead of two S-Ag-S linkages. The number of water molecules coordinating to Ln(III) (q) estimated on the basis of the luminescent lifetimes was as follows: Ag(I)(4)·Nd(III)·TCAS(2), 0; Ag(I)(2)·Yb(III)(2)·TCAS(2), 2.4; and Ag(I)(2)·Yb(III)·TCAS(2), 0. These findings were compatible with the solution-state structures. The luminescent quantum yield (Φ) for Ag(I)(4)·Nd(III)·TCAS(2) was 4.9 × 10(-4), which is the second largest value ever reported in H(2)O. These findings suggest that the O(8) cube is an ideal environment to circumvent deactivation via O-H oscillation of coordinating water. The Φ values for Ag(I)(2)·Yb(III)(2)·TCAS(2) and Ag(I)(2)·Yb(III)·TCAS(2) were found to be 3.8 × 10(-4) and 3.3 × 10(-3), respectively, reflecting the q value. Overall, these results indicate that the ternary systems have the potential for a noncovalent strategy via self-assembly of the multidentate ligand, Ln(III), and an auxiliary metal ion to obtain a highly efficient NIR-emissive Ln(III) complex that usually relies on elaborate covalent linkage of a chromophore and multidentate ligands to expel coordinating water.  相似文献   
55.
Superhydrophobic coatings were prepared by spraying a pigment nanoparticle suspension. By changing the type of pigment nanoparticles, the colors of the coating could be controlled. The particle size of the pigments, which determines the surface structure of the coatings, played an important role in exhibiting superhydrophobicity. The spray-coating process is applicable to a variety of materials (e.g., copper, glass, paper, coiled wire, and tied thread), and the superhydrophobicity was repairable.  相似文献   
56.
Radiation-induced solid-state polymerization of cyclohexene sulfide has been investigated. Differential thermal analysis shows that this compound has a phase transition point at ?74°C and behaves as a plastic crystal in the temperature range from ?74 to ?20°C (melting point). By rapid cooling, this plastic crystal was easily supercooled, and below ?166°C a glassy crystal, i.e., a supercooled nonequilibrium state of plastic crystal, was obtained. In-source polymerization proceeded in the plastic crystalline state. Postpolymerization of glassy crystalline monomer irradiated at ?196°C occurred above ?166°C (glass transition point) during subsequent heating.  相似文献   
57.
The influence of ferric acetylacetonate [Fe(acac)3] on the photodegradation of model compounds of polyethylene (PE) was examined. By studying electron-spin-resonance (ESR) spectra of photoirradiated compounds such as 1-octene and 1,7-octadiene, which contain carbon double bonds, Fe(acac)3 was found to accelerate the formation of allyl radical by contact with them. On the other hand, Fe(acac)3 suppressed the radical formation based on Norrish type I reaction in a carbonyl group of compounds such as 2-octanone and 3-octanone. Based on the study of ultraviolet (UV) spectra as well as ESR spectra on photoirradiated samples, the influence of Fe(acac)3 on the photodecomposition of model compounds of PE was discussed. Finally, the discussion turned to the mechanism of photodecomposition of PE in the presence of ferric salt.  相似文献   
58.
The number of pigments in single light-harvesting complexes (chlorosomes) were calculated by imaging single chlorosomes in a frozen buffer at cryogenic temperature with a confocal laser fluorescence microscope and pigment extraction. Chlorosomes were isolated from two types of green photosynthetic bacteria Chlorobium (Chl.) tepidum and Chloroflexus (Cfl.) aurantiacus and were individually imaged in the frozen medium. Each fluorescence spot observed mainly came from a single chlorosome and was ascribable to self-aggregates of bacteriochlorophyll (BChl) c molecules as core parts of chlorosomes. A three-dimensional distribution of fluorescence of single chlorosomes was analyzed, and the number of chlorosomes in a volume of 54,000 microm(3) was counted directly. On the basis of the results, averaged numbers of the BChl c molecules contained in a single chlorosome of Chl. tepidum and Cfl. aurantiacus were determined to be 1.4 x 10(5) and 9.6 x 10(4), respectively. The present numbers are almost comparable to those estimated by other methods (Martinez-Planells et al., Photosynth. Res. 2002, 71, 83 and Monta?o et al., Biophys. J. 2003, 85, 2560).  相似文献   
59.
Development of highly functional cesium selective adsorbents for the decontamination of high-activity-level water(HALW) from the Fukushima NPP-1 accident is very urgent. In order to selectively adsorb the radioactive cesium, three kinds of novel porous silica gels loaded with insoluble ferrocyanides(SLFC) were prepared using a successive impregnation/precipitation method. Based on the results of previous research, the SLFC composites have relatively large uptake ratio above 95%, distribution coefficients(Kd) above 103 cm3/g, and excellent adsorption kinetics even in seawater. The solidification results also indicate that zeolites have an excellent Cs immobilization characteristic, gas-trapping and self-sintering abilities, and low leachability. We chose three kinds of SLFC composites to achieve the optimization of solidification by mixing with nine kinds of additives at high temperatures(up to 1200 °C). The Cs contents in the three composites were estimated to be below 30% of the initial contents and decreased with the three stages at calcination temperatures ranging from 25 to 1200 °C. By contrast, the Cs immobilization ratio was markedly lowered by mixing with additives: of those, allophane had the best immobilization result. By increasing the additive ratio to 50 wt%, the Cs immobilization ratio became almost 100% and no volatilization of Cs was detected even after calcination at 1200 °C. This result indicates that calcination of the mixture of SLFC composites after adsorbing Cs+ ions and specific additives under appropriate ratio is effective for stable solidification.  相似文献   
60.
Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3C2Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3C2Tx composite has a high HER performance with 114 μmol/h/gcat, which is much higher than the BChl@Ti3C2Tx and Chl@Ti3C2Tx composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号