排序方式: 共有92条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
45.
Zachary M. Geballe Hanyu Liu Ajay K. Mishra Muhtar Ahart Maddury Somayazulu Yue Meng Maria Baldini Russell J. Hemley 《Angewandte Chemie (International ed. in English)》2018,57(3):688-692
Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen‐rich simple compounds having new clathrate‐like structures and remarkable electronic properties including room‐temperature superconductivity. X‐ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty‐two hydrogen atoms surrounding each La atom. Upon decompression, the fcc‐based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H?H distances of about 1.1 Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized. 相似文献
46.
Yoshimura Y Stewart ST Somayazulu M Mao HK Hemley RJ 《The Journal of chemical physics》2006,124(2):024502
In situ high-pressure/low-temperature synchrotron x-ray diffraction and optical Raman spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23 GPa at 80 K. Although there is no evidence for structural changes to at least 14 GPa, the unit-cell axial ratio ca undergoes changes at 10-14 GPa. Raman measurements carried out at 80 K show that the nu(Tz)A(1g)+nuT(x,y)E(g) lattice modes for the Raman spectra of ice VIII in the lower-frequency regions (50-800 cm(-1)) disappear at around 10 GPa, and then a new peak of approximately 150 cm(-1) appears at 14 GPa. The combined data provide evidence for a transition beginning near 10 GPa. The results are consistent with recent synchrotron far-IR measurements and theoretical calculations. The decompressed phase recovered at ambient pressure transforms to low-density amorphous ice when heated to approximately 125 K. 相似文献
47.
Lokshin KA Zhao Y He D Mao WL Mao HK Hemley RJ Lobanov MV Greenblatt M 《Physical review letters》2004,93(12):125503
The D2 clathrate hydrate crystal structure was determined as a function of temperature and pressure by neutron diffraction for the first time. The hydrogen occupancy in the (32+X)H2.136H(2)O, x=0-16 clathrate can be reversibly varied by changing the large (hexakaidecahedral) cage occupancy between two and four molecules, while remaining single occupancy of the small (dodecahedral) cage. Above 130-160 K, the guest D2 molecules were found in the delocalized state, rotating around the centers of the cages. Decrease of temperature results in rotation freezing followed by a complete localization below 50 K. 相似文献
48.
49.
Dalton DA Somayazulu M Goncharov AF Hemley RJ 《The journal of physical chemistry. A》2011,115(40):11033-11038
Raman spectroscopy and synchrotron X-ray diffraction are used to examine the high-pressure behavior of tetramethylammonium borohydride (TMAB) to 40 GPa at room temperature. The measurements reveal weak pressure-induced structural transitions around 5 and 20 GPa. Rietveld analysis and Le Bail fits of the powder diffraction data based on known structures of tetramethylammonium salts indicate that the transitions are mediated by orientational ordering of the BH(4)(-) tetrahedra followed by tilting of the (CH(3))(4)N(+) groups. X-ray diffraction patterns obtained during pressure release suggest reversibility with a degree of hysteresis. Changes in the Raman spectrum confirm that these transitions are not accompanied by bonding changes between the two ionic species. At ambient conditions, TMAB does not possess dihydrogen bonding, and Raman data confirms that this feature is not activated upon compression. The pressure-volume equation of state obtained from the diffraction data gives a bulk modulus [K(0) = 5.9(6) GPa, K(0)' = 9.6(4)] slightly lower than that observed for ammonia borane. Raman spectra obtained over the entire pressure range (spanning over 40% densification) indicate that the intramolecular vibrational modes are largely coupled. 相似文献
50.
Hydrogen sulfide (H(2)S) and hydrogen (H(2)) crystallize into a 'guest-host' structure at 3.5 GPa and, at the initial formation pressure, the rotationally disordered component molecules exhibit weak van der Waals-type interactions. With increasing pressure, hydrogen bonding develops and strengthens between neighboring H(2)S molecules, reflected in a pronounced drop in S-H vibrational stretching frequency and also observed in first-principles calculations. At 17 GPa, an ordering process occurs where H(2)S molecules orient themselves to maximize hydrogen bonding and H(2) molecules simultaneously occupy a chemically distinct lattice site. Intermolecular forces in the H(2)S+H(2) system may be tuned with pressure from the weak hydrogen-bonding limit to the ordered hydrogen-bonding regime, resulting in a novel clathrate structure stabilized by cooperative interactions. 相似文献