首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   45篇
  国内免费   4篇
化学   1011篇
晶体学   6篇
力学   54篇
数学   139篇
物理学   227篇
  2023年   18篇
  2022年   26篇
  2021年   45篇
  2020年   30篇
  2019年   28篇
  2018年   13篇
  2017年   29篇
  2016年   42篇
  2015年   48篇
  2014年   49篇
  2013年   86篇
  2012年   100篇
  2011年   102篇
  2010年   58篇
  2009年   59篇
  2008年   63篇
  2007年   56篇
  2006年   52篇
  2005年   58篇
  2004年   48篇
  2003年   54篇
  2002年   47篇
  2001年   22篇
  2000年   19篇
  1999年   23篇
  1998年   7篇
  1997年   7篇
  1996年   17篇
  1995年   10篇
  1994年   6篇
  1993年   11篇
  1992年   14篇
  1991年   10篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   7篇
  1982年   5篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1978年   13篇
  1977年   12篇
  1975年   5篇
  1974年   6篇
  1973年   10篇
  1966年   5篇
排序方式: 共有1437条查询结果,搜索用时 15 毫秒
71.
Results of chemical kinetics modeling in methane subjected to the microwave plasma at atmospheric pressure are presented in this paper. The reaction mechanism is based on the methane oxidation model without reactions involving nitrogen and oxygen. For the numerical calculations 0D and 1D models were created. 0D model uses Calorimetric Bomb Reactor whereas 1D model is constructed either as Plug Flow Reactor or as a chain of Plug Flow Reactor and Calorimetric Bomb Reactor. Both models explain experimental results and show the most important reactions responsible for the methane conversion and production of H2, C2H2, C2H4 and C2H6 detected in the experiment. Main conclusion is that the chemical reactions in our experiment proceed by a thermal process and the products can be defined by considering thermodynamic equilibrium. Temperature characterizing the methane pyrolysis is 1,500–2,000 K, but plasma temperature is in the range of 4,000–5,700 K, which means that methane pyrolysis process is occurring outside the plasma region in the swirl gas flowing around the plasma.  相似文献   
72.
Pure and highly crystalline FeNi3 alloy nanoparticles (NPs) were synthesized via sol–gel route with benzyl alcohol, using hydrazine as a reduction reagent without the usage of additional surfactant molecules nor further annealing processes. The structural studies revealed that the particle size is of ca. 200 nm, whose structure consisted on aggregation of small crystallites of about 13 nm. The magnetic properties of the as-synthesized NPs were similar to the bulk with a saturation magnetization of 95 emu g?1. Moreover, the coercive field was ca. 50 G, exhibiting a M r /M s ratio of 0.03, indicative of soft ferromagnetism. The electrical transport in the temperature range 2–300 K exhibits a typical ferromagnetic metallic behaviour. Finally, similar FeNi3 NPs were synthesized in EtOH/H2O mixtures in the presence of sodium dodecyl sulphate molecules as surfactant for comparative purposes, exhibiting a typical half hard magnetic behaviour, highlighting the interest of the reported benzylic route.  相似文献   
73.
Nanoparticles are widely studied as carrier vehicles in biological systems because their size readily allows access through cellular membranes. Moreover, they have the potential to carry cargo molecules and as such, these factors make them especially attractive for intravenous drug delivery purposes. Interest in protein-based nanoparticles has recently gained attraction due to particle biocompatibility and lack of toxicity. However, the production of homogeneous protein nanoparticles with high encapsulation efficiencies, without the need for additional cross-linking or further engineering of the molecule, remains challenging. Herein, we present a microfluidic 3D co-flow device to generate human serum albumin/celastrol nanoparticles by co-flowing an aqueous protein solution with celastrol in ethanol. This microscale co-flow method resulted in the formation of nanoparticles with a homogeneous size distribution and an average size, which could be tuned from ≈100 nm to 1 μm by modulating the flow rates used. We show that the high stability of the particles stems from the covalent cross-linking of the naturally present cysteine residues within the particles formed during the assembly step. By choosing optimal flow rates during synthesis an encapsulation efficiency of 75±24 % was achieved. Finally, we show that this approach achieves significantly enhanced solubility of celastrol in the aqueous phase and, crucially, reduced cellular toxicity.  相似文献   
74.
We report a catalytic, light‐driven method for the intramolecular hydroetherification of unactivated alkenols to furnish cyclic ether products. These reactions occur under visible‐light irradiation in the presence of an IrIII‐based photoredox catalyst, a Brønsted base catalyst, and a hydrogen‐atom transfer (HAT) co‐catalyst. Reactive alkoxy radicals are proposed as key intermediates, generated by direct homolytic activation of alcohol O?H bonds through a proton‐coupled electron‐transfer mechanism. This method exhibits a broad substrate scope and high functional‐group tolerance, and it accommodates a diverse range of alkene substitution patterns. Results demonstrating the extension of this catalytic system to carboetherification reactions are also presented.  相似文献   
75.
Herein we present co-crystallisation as a strategy for materials discovery in the field of switchable spin crossover (SCO) systems. Using [Fe(3-bpp)2]·2A (where 3-bpp = 2,6-bis(pyrazol-3-yl)pyridine, A = BF4/PF6) as a starting point, a total of 11 new cocrystals have been synthesised with five different dipyridyl coformers. Eight of these systems show spin crossover behaviour, and all show dramatically different switching properties from the parent complex. The cocrystals have been studied by variable temperature single-crystal X-ray diffraction and SQUID magnetometry to develop structure–property relationships. The supramolecular architecture of the cocrystals depends on the properties of the coformer. With linear, rigid coformer molecules leading to 1D supramolecular hydrogen-bonded chains, while flexible coformers form 2D sheets and bent coformers yield 3D network structures. The SCO behaviour of the cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials. The wider applicability of this strategy to the design of hybrid multifunctional materials is also discussed.

The switching behaviour of spin crossover cocrystals can be modified through changing the coformer and thus co-crystallisation presents a rapid, facile and highly modular tool for the discovery of new switchable materials.  相似文献   
76.
Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.  相似文献   
77.
78.
In this work the interaction of a non-steroidal anti-inflammatory drug (NSAID), diclofenac, with egg yolk phosphatidylcoline (EPC) liposomes, used as cell-membrane models, was quantified by determination of the partition coefficient. The liposome/aqueous phase partition coefficient was determined by derivative spectrophotometry, fluorescence quenching, and measurement of zeta-potential. Theoretical models based on simple partition of the diclofenac between two different media, were used to fit the experimental data, enabling the determination of Kp. The three techniques used yielded similar results. The effects of the interaction on the membranes characteristics were further evaluated, either by studying membrane potential changes or by effects on membrane fluidity. The liposome membrane potential and the size and size-homogeneity of liposomes were measured by light scattering. The effects of diclofenac on the internal viscosity or fluidity of the membrane were determined by use of spectroscopic probes—a series of n-(9-anthroyloxy) fatty acids in which the carboxyl terminal group is located at the interfacial region of the membrane and the fluorescent anthracene group is attached at different positions along the fatty acid chain. The location of the diclofenac on the membrane was also evaluated, by fluorescence quenching using the same series of fluorescent probes. Because the fluorescent anthracene group is attached at different positions along the fatty acid chain, it is possible to label at a graded series of depths in the bilayer. The interactions between the drug and the probe are a means of predicting the location of the drug on the membrane.  相似文献   
79.
In recent years, the concept of producing biodiesel from renewable lipid sources has regained international attention. In Brazil, a national program was launched in 2002 to evaluate the technical, economic, and environmental competitiveness of biodiesel in relation to the commercially available diesel oil. Several research projects were initiated nationwide to investigate and/or optimize biodiesel production from renewable lipid sources and ethanol derived from sugarcane (ethyl esters). Once implemented, this program will not only decrease our dependence on petroleum derivatives but also create new market opportunities for agribusiness, opening new jobs in the countryside, improving the sustainability of our energy matrix, and helping the Brazilian government to support important actions against poverty. This article discusses the efforts to develop the Brazilian biodiesel program in the context of technical specifications as well as potential oilseed sources.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号