首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学   12篇
物理学   21篇
  2013年   3篇
  2012年   4篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1978年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
In the Eu I configuration 4f 7 6s6d the isotope shift (IS) and hyperfine-structure (hfs) of the termse 6 D ande 10 D were determined from fourteen transitions (4f 7 6s6d-4f 7 6s6p) with computer supported interference spectroscopy. From the IS of altogether nine levels of 4f 7 6s6d the crossed-second-order-parameterg 3(4f,6s)=?0.90(6)mK was evaluated. The ratiog 3/G 3=?4.4(3)·10?6 (G 3: Slater Integral of the fine structure) is of the same size as that from five other independent investigations and one theoretical value. The single electron hfs splitting constantsa 4f 10 =?1.9(3)mK,a 6s 10 =391(3)mK, anda 6d 12 =0.9(3)mK were also evaluated and are compared with those of other Eu 4f 7 6snl configurations.  相似文献   
12.
A non-invasive Raman spectroscopic approach for meat species identification and quality detection was successfully demonstrated for the two closely related species beef and horse. Fresh beef and horse muscles were cut and ice-stored at 5 °C, and time-dependent Raman measurements were performed daily up to 12 days postmortem. Applying a 671 nm microsystem diode laser and a laser power of 50 mW, spectra were recorded with integration times of 1–4 s. A pronounced offset of the Raman spectra was observed between horse and beef, with high fluorescence background for horse compared to beef for all days of storage. Principal components analysis was applied for data evaluation revealing a clear distinction between beef and horse meat which can be attributed to differences in the myoglobin content of both species. Furthermore, separations according to aging and spoilage for the two species could be identified simultaneously. Therefore, Raman spectroscopy might be an efficient test method for meat species identification in combination with spoilage detection.  相似文献   
13.
Doppler-free saturation absorption spectroscopy was applied on an atomic thulium vapour in a see-through hollow cathode for the determination of precise values for the magnetic dipole hyperfine structure constantsA of 6 levels of the configuration 4f 13 6s7s. A parametric analysis of the hyperfine structure has been performed, using wave-functions from a fine structure calculation, which leads to one-electron hyperfine structure parametersa 4f 01 =?500(6) MHz,a 6s 10 =?5058(47) MHz, anda 7s 10 =?1012 MHz.  相似文献   
14.
The angular distribution of electrons resulting from off-resonant ionisation of atomic hydrogen has been measured recently [1]. Here we report calculations of these angular distributions using the method of implicit summation [2] to calculate the n-photon absorption probabilities in the nth order of perturbation theory.  相似文献   
15.
A distributed feedback (DFB) laser diode emitting at 785 nm was tested and applied as a light source for shifted excitation Raman difference spectroscopy (SERDS). Due to the physical properties of the laser diode, it was possible to shift the emission wavelength by 8 cm-1 (0.5 nm) required for our SERDS measurements by simply changing the injection current. The internal grating ensured single mode operation at both wavelength with the frequency stability of ±0.06 cm-1 (0.004 nm) required for high resolution Raman spectroscopic applications. The shifted spectra were used for calculating enhanced Raman spectra being obscured by a strong scattering background. A 16 dB (≈38 fold) improvement of the signal-to-background noise S̄/σB was demonstrated using blackboard chalk as a sample. The tunable DFB laser is a versatile excitation source for SERDS, which could be used in any dispersive Raman system to subtract fluorescence contributions and scattering background. PACS 82.80.Gk; 42.55.-f; 42.64.Fi  相似文献   
16.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
17.
We present experimental results to quantify and optimize the surface‐enhanced Raman scattering (SERS) activity of naturally grown silver nanoparticles. Ag nanoparticle ensembles with mean equivalent radii ranging from 10.6 to 20.3 nm were prepared under ultrahigh vacuum conditions by Volmer–Weber growth on quartz plates. A tuning of the localized surface plasmon polariton resonance wavelength from 453 to 548 nm was performed by varying the morphology of the silver nanoparticles. The dependence of the SERS activity on the plasmon resonance wavelength was investigated with a Raman set‐up containing a microsystem light source with an emission line at 488 nm. Shifted excitation Raman difference spectroscopy was applied to remove the fluorescence‐based background from the SERS spectra of pyrene in water using two slightly different emission wavelengths (487.61 and 487.91 nm) of the microsystem light source. We demonstrate that the Raman activities for all SERS substrates are available in the nanomolar range in a water sample. However, the Raman activity crucially depends on the plasmon resonance wavelength of the nanoparticle ensembles. Although for an on‐resonance ensemble the limit of detection for pyrene in water is very low and was estimated to be 2 nmol/L, it increases rapidly to several tens of nanomol for slightly off‐resonance ensembles. Hence, the highest SERS activity was obtained with a nanoparticle ensemble exhibiting a plasmon resonance wavelength at 491 nm, which almost coincides with the excitation wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
18.
The development of surface-enhanced Raman scattering substrates suitable for in situ environmental analysis in sea-water is presented. Substrates consist of metal colloids encapsulated in a sol-gel-derived xerogel layer. Control of the gel parameters, such as porosity, pore size, and polarity, enables tailoring of sensitivity to different analyte groups. Gold and silver colloids were used along with tetraethoxysilane (TEOS) and methyltriethoxysilane (MTEOS) precursors. Substrates are characterised by measurement of optical spectra and use of scanning electron microscopy (SEM). Activity is discussed in terms of the choice of precursor and choice of metal colloid. Spectra were obtained for a range of substituted benzene derivatives with limits of detection (LODs) of 100 ppb and 10 ppb for chlorobenzene and phenylacetylene, respectively. Substrate selectivity is shown by the contrasting response of a single substrate type to similar molecules, in particular phenylacetylene and benzonitrile. Details of mechanical and chemical stability tests on the substrates are also included. Received: 2 July 1998 / Revised version: 3 February 1999 / Published online: 7 July 1999  相似文献   
19.
20.
In this contribution we summarize recent experiments with the objective to generate optimized substrates for surface-enhanced Raman spectroscopy (SERS). For this purpose, the well-established laser-assisted growth technique has been applied, which relies on a precise control of the growth kinetics of supported metal nanoparticles. With this method reproducible and stable SERS substrates with tailor-made optical properties possing best field enhancements were produced for specific excitation wavelengths and detection ranges. Optimization of the SERS substrates has been achieved by stabilizing the localized surface plasmon polariton resonance (SPR) of gold nanoparticles in the vicinity of the laser wavelength of λ=647 nm and λ=785 nm used for SERS excitation. After nanoparticle preparation, SERS spectra of pyrene were obtained using naturally grown nanoparticles and nanoparticles prepared by laser-assisted growth. The most important result is that the optimized substrates prepared by laser-assisted growth exhibit a significantly higher signal-to-noise ratio as compared to naturally grown nanoparticles. They are even better than substrates whose SPR has been tuned to the excitation wavelength by an elevated temperature during preparation. Another important observation is that all SERS spectra exhibit excellent reproducibility and the substrates do not show degradation during the measurements. Finally, the SERS enhancement factors due to the optimized substrates have been estimated and are on the order of 105 to 106.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号