首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   19篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2008年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
11.
A homogeneous nanostructured enzyme (artificial peroxidase, AP) with suitable catalytic efficiency was generated using bovine heart cytochrome c (Cyt c) and sodium dodecyl sulfate nano-micelles in 50?mM phosphate buffer pH 10.5 at 25?°C. The Michaelis?CMenten (K m) and catalytic rate (k cat) of the AP were determined to be 21.6?±?1.2???M and 0.474?±?0.013?s?1, respectively. The catalytic efficiency of the AP was 0.0219?±?0.002???M?1s?1, which was 30?±?1.5?% as efficient as the native horseradish peroxidase (HRP). The mean diameter of AP was measured to be 6.4?nm using dynamic light scattering technique. The UV?CVis spectrometry, circular dichroism, surface tension, isothermal titration calorimetric and electrochemistry methods were utilized for additional characterization of the AP. Together our results suggest that the AP generated here can be used in place of HRP in industrial and commercial fields under some extreme conditions.  相似文献   
12.
13.
In the presence of low energy gamma emitter radioisotopes of thallium-201 (201T1) or technetium-99m (99mTc), H2O2 was generated via radiolysis of water. The produced H2O2 was amperometrically determined using an anthraquinone 2-carboxylic acid modified horseradish peroxidase on glassy carbon electrode. In the presence of each radioisotope, the cathodic current produced due to the amperometric detection of H2O2, was designated as biosensor response. At the applied potential of -550 mV (vs. Ag/AgCl), the biosensor showed the sensitivities of 1.937 and 2.278 nA h ?Gy-1 towards H2O2 produced by 201Tl and 99mTc respectively. Finally, the calibration curves for dose rate determination of 201Tl and 99mTc have been presented and the correlations between biosensor response to H2O2 and the gamma emitter dose rates for 201Tl and 99mTc are established.  相似文献   
14.
A nano-micelle with highly efficient peroxide activity was constructed by self-assembly of sodium dodecyl sulfate micellar, histidine and hematin in 50 mM phosphate buffer at 25 °C. UV–Vis spectrometry methods were utilized for characterization of the nanostructured material or artificial peroxidase (AP). The Michaelis–Menten (K m) and catalytic rate (k cat) constants of the AP were obtained to be 5.5 μM and 0.06 s?1, respectively, in 50 mM phosphate buffer solution at pH 8.0. The catalytic efficiency of AP was evaluated to be 0.011 μM?1 s?1. The AP was also immobilized on a functional multi-wall carbon nanotubes-gold nanoparticles (AuNPs) nano-complex modified glassy carbon electrode (GCE). The transmission electron microscopy method was utilized for the characterization of the nano-materials. The electron-transfer rate constant (k s) and the apparent Michaelis–Menten constant K m app of the AP modified GCE were evaluated to be 1.36 s?1 and 0.19 μM, respectively. For a biosensor without a redox protein, the properties of the AP modified GCE were significant and will further benefit from additional studies and improvement.  相似文献   
15.
This work describes the reaction mechanism for chemical modification of tyrosinase by Woodward's Reagent K and its covalent attachment to a glassy carbon electrode. The spectrophotometric studies revealed that the modification does not cause a significant structural change to tyrosinase. The direct electrochemistry of modified enzyme was achieved after immobilization on an oxidatively activated glassy carbon electrode. The enzyme film exhibited a pair of well-defined quasi-revesible voltammetric peaks corresponding to the Cu (II)/Cu (I) redox couple located in the active site of tyrosinase. The formal potential of immobilized enzyme was measured to be 90mV (vs. Ag/AgCl) in phosphate buffer solution at pH 7.0. The charge-transfer coefficient and apparent heterogeneous electron transfer rate constant were estimated to be 0.5 and 0.9±0.06s(-1), respectively. Finally, the electrochemical behavior of the immobilized enzyme in the presence of caffeic acid and L-3,4-dihydroxyphenylalanine as substrates was investigated. The amperometric study of biosensor toward L-3,4-dihydroxyphenylalanine resulted a linear response in the concentration range from 1.66×10(-6) to 8.5×10(-5)M with detection limit of 9.0×10(-5)M and sensitivity of 135mAμM(-1)cm(-2).  相似文献   
16.
Direct electron transfer of immobilized copper, zinc‐superoxide dismutase (SOD) onto electrodeposited nickel‐oxide (NiOx) nanoparticle modified glassy carbon (GC) electrode displays a well defined redox process with formal potential of ?0.03 V in pH 7.4. Cyclic voltammetry was used for deposition of (NiOx) nanoparticles and immobilization of SOD onto GC electrode. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized SOD are 1.75×10?11 mol cm?2 and 7.5±0.5 s?1, respectively. The biosensor shows a fast amperometric response (3 s) toward superoxide at a wide concentration range from 10 µM to 0.25 mM with sensitivity of 13.40 nA µM?1 cm?2 and 12.40 nA µM?1 cm?2, detection limit of 2.66 and 3.1 µM based on anodically and cathodically detection. This biosensor exhibits excellent stability, reproducibility and long life time.  相似文献   
17.
Journal of Analytical Chemistry - An Erratum to this paper has been published: https://doi.org/10.1134/S1061934822340019  相似文献   
18.
Noble metal nanoparticles have a great potential for biological studies. In the present work, gold-coated magnetic nanoparticles (GMNPs) and silver-coated magnetic nanoparticles (SMNPs) were synthesized at different conditions and used as carrier for the immobilization of horseradish peroxidase (HRP). UV/Vis spectroscopy and scanning electron micrograph were used for nanoparticles characterization. Also surface conductivity of MNPs, GMNPs and SMNPs was investigated by LCR meter to be 34.5, 78 and 57.4 μS, respectively. The change in secondary structure, enzymatic activity, direct electrochemistry and HRP bioactivity were studied in the presence of either GMNPs or SMNPs. The attached HRP on GMNPs and SMNPs showed quasi-reversible cyclic voltammograms with the formal potential of ?305 and ?269 and peak separation of 230 and 302 mV, respectively. In addition, HRP/GMNPs/Au and HRP/SMNPs/Au electrodes responded to hydrogen peroxide in the linear concentration range from 0.72 to 25.92 and 1.62 to 19.62 μM, respectively.  相似文献   
19.
A biosensor for the quantification of superoxide radical (O(2)˙(-)) was developed based on a nano-composite containing cytochrome c (Cyt c), carboxylated multi-walled carbon nanotubes and a room temperature ionic liquid (RTIL). The immobilized Cyt c was characterized by field emission scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. Using this biosensor a formal potential of -280 mV (vs. Ag/AgCl) and electron transfer rate constant of 1.24 was recorded for the immobilized Cyt c in 0.1 M phosphate buffer solution (pH 7.0). The biosensor showed a relatively high sensitivity (7.455 A M(-1) cm(-2)) and a long term stability (180 days) towards O(2)˙(-) in the concentration range from 0.05 to 8.1 μM with a detection limit of 0.03 μM. The selectivity of the biosensor to O(2)˙(-) was verified when its response was compared with those obtained by four potential interfering substances (ascorbic acid, uric acid, acetaminophen and hydrogen peroxide).  相似文献   
20.
In the present report, six different nano-composites contaning the same amine functionalized multi-walled carbon nanotubes (NH(2)-MWCNTs) but different room temperature ionic liquids (RTILs) were prepared. Then, the efficiency of these nano-composites as supporting materials for studying the electrochemistry and electrocatalysis of choline oxidase (ChOx) as a model enzyme were compared. The corresponding cyclic voltammetric and amperometric data showed that the electrocatalytic activity and the electroanalytical performance of immobilized ChOx depends on the degree of hydrophilicity of RTILs used in the applied nano-composite. The higher stability (180 days), higher enzyme loading (6.56 mol cm(-2)), lower detection limit (3.85 μM) and wider linear range (0.005-0.8 mM) was obtained for the most hydrophilic RTIL (1-allyl-3-methylimidazolium bromide).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号