首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8475篇
  免费   1523篇
  国内免费   959篇
化学   6297篇
晶体学   76篇
力学   499篇
综合类   45篇
数学   1055篇
物理学   2985篇
  2024年   16篇
  2023年   203篇
  2022年   301篇
  2021年   322篇
  2020年   457篇
  2019年   391篇
  2018年   345篇
  2017年   277篇
  2016年   405篇
  2015年   416篇
  2014年   510篇
  2013年   626篇
  2012年   766篇
  2011年   823篇
  2010年   548篇
  2009年   489篇
  2008年   480篇
  2007年   454篇
  2006年   471篇
  2005年   356篇
  2004年   278篇
  2003年   227篇
  2002年   279篇
  2001年   160篇
  2000年   169篇
  1999年   179篇
  1998年   129篇
  1997年   128篇
  1996年   139篇
  1995年   108篇
  1994年   97篇
  1993年   64篇
  1992年   66篇
  1991年   57篇
  1990年   46篇
  1989年   42篇
  1988年   37篇
  1987年   18篇
  1986年   25篇
  1985年   21篇
  1984年   12篇
  1983年   3篇
  1982年   1篇
  1981年   6篇
  1980年   1篇
  1957年   3篇
  1935年   1篇
  1931年   1篇
  1930年   3篇
  1922年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
251.
Lu X  Tian F  Wang N  Zhang Q 《Organic letters》2002,4(24):4313-4315
[structure: see text] The viability of the Diels-Alder (DA) cycloaddition of conjugated dienes onto the sidewalls of single-wall carbon nanotubes is assessed by means of a two-layered ONIOM(B3LYP/6-31G:AM1) approach. Whereas the DA reaction of 1,3-butadiene on the sidewall of an armchair (5,5) nanotube is found to be unfavorable, the cycloaddition of quinodimethane is predicted to be viable due to the aromaticity stabilization at the corresponding transition states and products.  相似文献   
252.
253.
In this work, large area gold-nanoparticle-cluster pillar array with a gold mirror as high-performance SERS substrate was facilely fabricated by combined use of nanosphere lithography and self-assembly approach.  相似文献   
254.
A total of 29 major and trace elements have been determined in 43 plant samples collected from the Xizang (Tibet) Plateau using INAA at a SLOWPOKE mini-reactor in order to study elemental background concentration values in Xizang plants. In this paper are reported elemental concentrations of different parts of the plants compared to average values of plants worldwide. The preliminary results suggest that nutritional, plant elements in this region are quite low indicative of a state of malnutrition, while the contents of Al, Ti, Cr and Ba are comparatively high. These findings indicate that the concentrations of most elements in the plants are mainly affected by local soil geochemical characteristics. Some variation in elemental distribution within the plants was also evident: in general, higher concentrations were found in stems compared to roots, and, differences for nutritional elements among the plant species were much greater than found for other elements.  相似文献   
255.
We report the first observation of surface-enhanced Raman scattering (SERS) excited with ultraviolet (UV) light from transition metal electrodes. Adsorbed pyridine and SCN- on rough rhodium (Rh) and ruthenium (Ru) electrodes, respectively, have been studied using 325 nm laser excitation. In contrast, the best enhancers in the visible and near infrared, silver and gold, do not produce UV-SERS. The experimental data of UV-SERS are in agreement with our preliminary theoretical calculation based on the electromagnetic enhancement mechanism. The enhancement factor is about 2 orders of magnitude for the Rh and Ru electrodes when they are excited at 325 nm.  相似文献   
256.
Core-shell Au-Pt nanoparticles were synthesized by using a seed growth method and characterized by transmission electron microscopy, X-ray diffraction, and UV-vis spectroscopy. Au(core)-Pt(shell)/GC electrodes were prepared by drop-coating the nanoparticles on clean glassy carbon (GC) surfaces, and their electrochemical behavior in 0.5 M H2SO4 revealed that coating of the Au core by the Pt shell is complete. The electrooxidation of carbon monoxide and methanol on the Au(core)-Pt(shell)/GC was also examined, and the results are similar to those obtained on a bulk Pt electrode. High quality surface-enhanced Raman scattering (SERS) spectra of both adsorbed CO and thiocyanate were observed on the Au(core)-Pt(shell)/GC electrodes. The potential-dependent SERS features resemble those obtained on electrochemically roughened bulk Pt or Pt thin films deposited on roughened Au electrodes. For thiocyanate, the C-N stretching frequency increases with the applied potential, yielding two distinctly different dnu(CN)/dE. From -0.8 to -0.2 V, the dnu(CN)/dE is ca. 50 cm(-1)/V, whereas it is 90 cm(-1)/V above 0 V. The bandwidth along with the band intensity increases sharply above 0 V. At the low-frequency region, Pt-NCS stretching mode at 350 cm(-1) was observed at the potentials from -0.8 to 0 V, whereas the Pt-SCN mode at 280 cm(-1) was largely absent until around 0 V and became dominant at more positive potentials. These potential-dependent spectral transitions were attributed to the adsorption orientation switch from N-bound dominant at the negative potential region to S-bound at more positive potentials. The origin of the SERS activity of the particles is briefly discussed. The study demonstrates a new method of obtaining high quality SERS on Pt-group transition metals, with the possibility of tuning SERS activity by varying the core size and the shell thickness.  相似文献   
257.
Optimizing interfacial contacts and thus electron transfer phenomena in heterogeneous electrocatalysts is an effective approach for enhancing electrocatalytic performance. Herein, we successfully synthesized ultrafine β-Mo2C nanoparticles confined within hollow capsules of nitrogen-doped porous carbon (β-Mo2C@NPCC) and found that the surface layer of molybdenum atoms was further oxidized to a single Mo–O surface layer, thus producing intimate O–Mo–C interfaces. An arsenal of complementary technologies, including XPS, atomic-resolution HAADF-STEM, and XAS analysis clearly reveals the existence of O–Mo–C interfaces for these surface-engineered ultrafine nanostructures. The β-Mo2C@NPCC electrocatalyst exhibited excellent electrocatalytic activity for the hydrogen evolution reaction (HER) in water. Theoretical studies indicate that the highly accessible ultrathin O–Mo–C interfaces serving as the active sites are crucial to the HER performance and underpinned the outstanding electrocatalytic performance of β-Mo2C@NPCC. This proof-of-concept study opens a new avenue for the fabrication of highly efficient catalysts for HER and other applications, whilst further demonstrating the importance of exposed interfaces and interfacial contacts in efficient electrocatalysis.

Ultrafine β-Mo2C nanostructures encapsulated in N-doped carbon capsules featuring O–Mo–C interfaces as the active sites for HER have been unveiled.  相似文献   
258.
Tian L  Liu L  Chen L  Lu N  Xu H 《Talanta》2005,66(1):130-135
A vanadium oxide-modified glassy carbon electrode was simply and conveniently fabricated by casting vanadium tri(isoproxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the glassy carbon electrode surface. The electrochemical properties of iodide at the VO(OC3H7)3-PPC film-modified glassy carbon electrode were investigated by cyclic voltammetry, and an anodic peak was observed at approximately +0.71 V (vs. SCE). Based on this, a sensitive and convenient electrochemical method was proposed for the determination of iodide. Flow injection amperometry (FIA) exhibited a good linear relationship with the concentration of iodide in the range of 5 × 10−7 mol L−1 and 1 × 10−3 mol L−1, and the detection limit was 1 × 10−7 mol L−1. Quantitative recovery of iodide in synthetic samples has been obtained and the interferences from different cations and anions have been studied. The method has been successfully applied to the determination of iodide in dry edible seaweed. The concentrations of iodide measured by this method are in good agreement with those obtained by spectrophotometric method.  相似文献   
259.
C(2)-symmetric bis(oxazolinato)lanthanide complexes of the type [(4R,5S)-Ph(2)Box]La[N(TMS)(2)](2), [(4S,5R)-Ar(2)Box]La[N(TMS)(2)](2), and [(4S)-Ph-5,5-Me(2)Box]La[N(TMS)(2)](2) (Box = 2,2'-bis(2-oxazoline)methylenyl; Ar = 4-tert-butylphenyl, 1-naphthyl; TMS = SiMe(3)) serve as precatalysts for the efficient enantioselective intramolecular hydroamination/cyclization of aminoalkenes and aminodienes. These new catalyst systems are conveniently generated in situ from the known metal precursors Ln[N(TMS)(2)](3) or Ln[CH(TMS)(2)](3) (Ln = La, Nd, Sm, Y, Lu) and 1.2 equiv of commercially available or readily prepared bis(oxazoline) ligands such as (4R,5S)-Ph(2)BoxH, (4S,5R)-Ar(2)BoxH, and (4S)-Ph-5,5-Me(2)BoxH. The X-ray crystal structure of [(4S)-(t)BuBox]Lu[CH(TMS)(2)](2) provides insight into the structure of the in situ generated precatalyst species. Lanthanides having the largest ionic radii exhibit the highest turnover frequencies as well as enantioselectivities. Reaction rates maximize near 1:1 BoxH:Ln ratio (ligand acceleration); however, increasing the ratio to 2:1 BoxH:Ln decreases the reaction rate, while affording enantiomeric excesses similar to the 1:1 BoxH:Ln case. A screening study of bis(oxazoline) ligands reveals that aryl stereodirecting groups at the oxazoline ring 4 position and additional substitution (geminal dimethyl or aryl) at the 5 position are crucial for high turnover frequencies and good enantioselectivities. The optimized precatalyst, in situ generated [(4R,5S)-Ph(2)Box]La[N(TMS)(2)](2), exhibits good rates and enantioselectivities, comparable to or greater than those achieved with chiral C(1)-symmetric organolanthanocene catalysts, even for poorly responsive substrates (up to 67% ee at 23 degrees C). Kinetic studies reveal that hydroamination rates are zero order in [amine substrate] and first order in [catalyst], implicating the same general mechanism for organolanthanide-catalyzed hydroamination/cyclizations (intramolecular turnover-limiting olefin insertion followed by the rapid protonolysis of an Ln-C bond by amine substrate) and implying that the active catalytic species is monomeric.  相似文献   
260.
We report a facile synthesis of Au tetrahedra in high purity and with tunable, well‐controlled sizes via seed‐mediated growth. The success of this synthesis relies on the use of single‐crystal, spherical Au nanocrystals as the seeds and manipulation of the reaction kinetics to induce an unsymmetrical growth pattern for the seeds. In particular, the dropwise addition of a precursor solution with a syringe pump, assisted by cetyltrimethylammonium chloride and bromide at appropriate concentrations, was found to be critical to the formation of Au tetrahedra in high purity. Their sizes could be readily tuned in the range of 30–60 nm by simply varying the amount of precursor added to the reaction solution. The current strategy not only enables the synthesis of Au tetrahedra with tunable and controlled sizes but also provides a facile and versatile approach to reducing the symmetry of nanocrystals made of a face‐centered cubic lattice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号