首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   6篇
化学   116篇
晶体学   2篇
力学   2篇
数学   14篇
物理学   80篇
  2021年   1篇
  2020年   7篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   15篇
  2012年   16篇
  2011年   10篇
  2010年   2篇
  2009年   4篇
  2008年   10篇
  2007年   13篇
  2006年   8篇
  2005年   4篇
  2004年   10篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   10篇
  1995年   11篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
41.
In this paper, we describe a lead transformation tool, NEAT (Novel and Electronically equivalent Aromatic Template), which can help identify novel aromatic rings that are estimated to have similar electrostatic potentials, dipoles, and hydrogen bonding capabilities to a query template; hence, they may offer similar bioactivity profiles. In this work, we built a comprehensive heteroaryl database, and precalculated high-level quantum mechanical (QM) properties, including electrostatic potential charges, hydrogen bonding ability, dipole moments, chemical reactivity, and othe properties. NEAT bioisosteric similarities are based on the electrostatic potential surface calculated by Brood, using the precalculated QM ESP charges and other QM properties. Compared with existing commercial lead transformation software, (1) NEAT is the only one that covers the comprehensive heteroaryl chemical space, and (2) NEAT offers a better characterization of novel aryl cores by using high-evel QM properties that are relevant to molecular interactions. NEAT provides unique value to medicinal chemists quickly exploring the largely uncharted aromatic chemical space, and one successful example of its application is discussed herein.  相似文献   
42.
43.
Visible light induces switching of surface chemical patterns based on hybrid gels of thermally responsive poly(N-isopropyl acrylamide) copolymer networks containing iron oxide nanoparticles. The swelling of these hybrid gels is reduced upon illumination (see picture), allowing controlled unfolding of creased features formed owing to an elastic surface instability.  相似文献   
44.
45.
46.
47.
48.
49.
50.
Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9-tert-butyl-anthracene ester (9TBAE) in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product. In this article, it is shown how a novel combination of ensemble oriented-crystal solid-state NMR, X-ray diffraction, and first principles computational modeling can be used to establish the absolute unit cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the photomechanical response and enabling the construction of a model that predicts an elongation of 7.4%, in good agreement with the experimental value. According to this model, the nanorod expansion does not result from an overall change in the volume of the unit cell, but rather from an anisotropic rearrangement of the molecular contents. The ability to understand quantitatively how molecular-level photochemistry generates mechanical displacements allows us to predict that the expansion could be tuned from +9% to −9.5% by controlling the initial orientation of the unit cell with respect to the nanorod axis. This application of NMR-assisted crystallography provides a new tool capable of tying the atomic-level structural rearrangement of the reacting molecular species to the mechanical response of a nanostructured sample.

NMR crystallography establishes absolute unit-cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the nanorod''s photomechanical response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号