首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   28篇
  国内免费   20篇
化学   467篇
晶体学   5篇
力学   62篇
数学   62篇
物理学   226篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2017年   5篇
  2016年   14篇
  2015年   10篇
  2014年   9篇
  2013年   27篇
  2012年   30篇
  2011年   35篇
  2010年   17篇
  2009年   18篇
  2008年   33篇
  2007年   43篇
  2006年   33篇
  2005年   35篇
  2004年   30篇
  2003年   28篇
  2002年   41篇
  2001年   22篇
  2000年   30篇
  1999年   13篇
  1998年   5篇
  1997年   9篇
  1996年   14篇
  1995年   17篇
  1994年   12篇
  1993年   5篇
  1992年   11篇
  1991年   15篇
  1990年   25篇
  1989年   16篇
  1988年   12篇
  1987年   15篇
  1986年   7篇
  1985年   11篇
  1984年   11篇
  1982年   10篇
  1981年   6篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   8篇
  1975年   9篇
  1974年   14篇
  1973年   9篇
  1972年   11篇
  1971年   6篇
  1970年   6篇
排序方式: 共有822条查询结果,搜索用时 906 毫秒
81.
By definition, a homogeneous isotropic compressible Hadamard material has the property that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as regards the wave, homogeneous means that the direction of propagation of the wave is parallel to the direction of eventual attenuation; and longitudinal means that the wave is linearly polarized in a direction parallel to the direction of propagation. In other words, the displacement is of the form u = ncos k(n · xct), where n is a real vector. It is seen that the Hadamard material is the most general one for which a longitudinal inhomogeneous plane wave may also propagate in any direction of a predeformed body. Here, inhomogeneous means that the wave is attenuated, in a direction distinct from the direction of propagation; and longitudinal means that the wave is elliptically polarized in the plane containing these two directions, and that the ellipse of polarization is similar and similarly situated to the ellipse for which the real and imaginary parts of the complex wave vector are conjugate semi-diameters. In other words, the displacement is of the form u = {S exp i(S · xct)}, where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It is the most general homogeneous isotropic compressible material which allows the propagation of infinitesimal longitudinal inhomogeneous plane circularly polarized waves for all choices of the isotropic directional bivector. Finally, the most general forms of response functions are found for homogeneously deformed isotropic elastic materials in which longitudinal inhomogeneous plane waves may propagate with a circular polarization in each of the two planes of central circular section of the n -ellipsoid, where is the left Cauchy-Green strain tensor corresponding to the primary pure homogeneous deformation.  相似文献   
82.
Suppose the principal stretches are all different at a point P in a deformed body. In this case, it has been shown [1] that generally there is an infinity of non coplanar infinitesimal material line elements at P which remain unsheared following the deformation – that is, the angle between the arms of each pair of material line elements forming the triad remains unchanged. Here it is shown that in this case when all three principal stretches at P are different, there is no set of four infinitesimal material line elements, no three of which are coplanar, and such that the angle between each pair of the six pairs of material line elements is unchanged following the deformation. It is only when all three principal stretches at P are equal to each other, that there are unsheared tetrads at P, and in that case all tetrads are unsheared. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
83.
Inhomogeneous plane wave solutions to the wave equations for a linear isotropic elastic solid and a linear isotropic dielectric are shown to possess energy flux velocity vectors which are non-coincident with corresponding group velocity vectors.In contrast to free surface waves, these examples imply a driving constraint and have an associated non-zero Lagrangian energy density.  相似文献   
84.
This paper deals exclusively with finite amplitude motions in viscoelastic materials for which the stress is the sum of a part corresponding to the classical Mooney-Rivlin incompressible isotropic elastic solid and of a dissipative part corresponding to the classical viscous incompressible fluid. Of particular interest is a finite pseudoplanar elliptical motion which is an exact solution of the equations of motion. Superposed on this motion is a finite shearing motion. An explicit exact solution is presented. It is seen that the basic pseudoplanar motion is stable with respect to the finite superposed shearing motion. Particular exact solutions are obtained for the classical neo-Hookean solid and also for the classical Navier-Stokes equations. Finally, it is noted that parallel results may be obtained for a basic pseudoplanar hyperbolic motion.  相似文献   
85.
An analysis is presented of stretching, shearing and spin of material line elements in a continuous medium. It is shown how to determine all pairs of material line elements at a point x, at time t, which instantaneously are not subject to shearing. For a given pair not subject to shearing, a formula is presented for the determination of a third material line element such that all three form a triad not subject to shearing, instantaneously. It is seen that there is an infinity of such triads not subject to shearing. A new decomposition of the velocity gradient L is introduced. In place of the classical decomposition of Cauchy and Stokes, L=d+w, where d is the stretching tensor and w is the spin tensor, the new decomposition is L=?+, where ?, called the ldquo;modified” stretching tensor, is not symmetric, and , called the “modified” spin tensor, is skew-symmetric – the tensor ? being chosen so that it has three linearly independent real right (and left) eigenvectors. The physical interpretation of this decomposition is that the material line elements along the three linearly independent right eigenvectors of ? instantaneously form a triad not subject to shearing. They spin as a rigid body with angular velocity μ (say) associated with . Also, for each decomposition L=?+, there is a decomposition L=? T +, where is also skew-symmetric. The triad of material line elements along the right eigenvectors of ? T (the set reciprocal to the right eigenvectors of ?) is also instantaneously not subject to shearing and rotates with angular velocity (say) associated with . It is seen that the vorticity vector ω is the mean of the two angular velocities μ and , ω =(μ+)/2. For irrotational motion, ω =0, so that μ=-; any triad of material line elements suffering no shearing rotates with angular velocity equal and opposite to that of the reciprocal triad of material line elements. It is proved that provided d is not spherical, there is an infinity of choices for ? and in the decomposition L=?+. Two special types of decompositions are introduced. The first type is called “CCS-decomposition” (where CCS is an abbreviation for Central Circular Section). It is associated with the infinite family of triads (not subject to shearing) with a common edge along the normal to one plane of central circular section of an ellipsoid ? associated with the stretching tensor, and the two other edges arbitrary in the other plane of central circular section of ?. There are two such CCS-decompositions. The second type is called “triangular decomposition”, because, in a rectangular cartesian coordinate system, ? has three off-diagonal zero elements. There are six such decompositions. Received 14 November 2000 and accepted 2 August 2001  相似文献   
86.
A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split-resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3-10) in ampholyte buffers, and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by noninvasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady-state theory. This work illustrates that molecular separations can be deployed within a single open drop, and the differential fractions can be separated into new discrete liquid elements.  相似文献   
87.
The absolute stereochemistry of the steroidal saponins bethosides B and C was previously assigned as (22R,25R) on the basis of work that employed Horeau's method. Our studies of helosides A and B created doubt about both the original assignment and consequently our conclusion that relied upon it. The absolute configurations of bethosides B and C are revised to (22S,25R) following X-ray crystallographic analysis of their aglycone. Synthesis and full spectral characterization of both the 22R and 22S aglycones is reported to facilitate future stereochemical assignments in this series of saponins.  相似文献   
88.
The bulk structure of the two oldest ionic liquids (ILs), ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN), is elucidated using neutron diffraction. The spectra were modelled using empirical potential structure refinement (EPSR). The results demonstrate that EAN exhibits a long-range structure of solvophobic origin, similar to a bicontinuous microemulsion or disordered L(3)-sponge phase, but with a domain size of only 1 nm. The alcohol (-OH) moiety in EtAN interferes with solvophobic association between cation alkyl chains resulting in small clusters of ions, rather than an extended network.  相似文献   
89.
The structure and dynamics of the interfacial layers between the extremely pure air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and Au(111) has been investigated using in situ scanning tunneling microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy measurements. The in situ scanning tunnelling microscopy measurements reveal that the Au(111) surface undergoes a reconstruction, and at -1.2 V versus Pt quasi-reference the famous (22 × √3) herringbone superstructure is probed. Atomic force microscopy measurements show that multiple ion pair layers are present at the ionic liquid/Au interface which are dependent on the electrode potential. Upon applying cathodic electrode potentials, stronger ionic liquid near surface structure is detected: both the number of near surface layers and the force required to rupture these layers increases. The electrochemical impedance spectroscopy results reveal that three distinct processes take place at the interface. The fastest process is capacitive in its low-frequency limit and is identified with electrochemical double layer formation. The differential electrochemical double layer capacitance exhibits a local maximum at -0.2 V versus Pt quasi-reference, which is most likely caused by changes in the orientation of cations in the innermost layer. In the potential range between -0.84 V and -1.04 V, a second capacitive process is observed which is slower than electrochemical double layer formation. This process seems to be related to the herringbone reconstruction. In the frequency range below 1 Hz, the onset of an ultraslow faradaic process is found. This process becomes faster when the electrode potential is shifted to more negative potentials.  相似文献   
90.
A simple direct proof is given of the known result that in any deformation x = x(X), the planes of the central circular sections of the material strain-ellipsoid at X are deformed into the planes of the spatial strain-ellipsoid at x. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号