首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   13篇
化学   209篇
晶体学   8篇
力学   5篇
数学   31篇
物理学   95篇
  2024年   4篇
  2023年   3篇
  2022年   14篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   8篇
  2017年   11篇
  2016年   11篇
  2015年   8篇
  2014年   17篇
  2013年   14篇
  2012年   16篇
  2011年   21篇
  2010年   12篇
  2009年   6篇
  2008年   8篇
  2007年   13篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  2000年   7篇
  1999年   2篇
  1997年   4篇
  1996年   11篇
  1995年   11篇
  1994年   6篇
  1993年   2篇
  1989年   5篇
  1988年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1961年   2篇
  1960年   1篇
  1959年   1篇
  1941年   2篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
341.
This study presents the high purity germanium (HPGe) gamma spectrometric measurement of natural radioactivity mainly due to 226Ra, 232Th and 40K in soil samples collected in Ferozepur and Faridkot district of Punjab, India. 226Ra activity varied from 28.6 to 51.1 Bq kg−1 with the mean of 39.7 Bq kg−1. The range and mean activity of 232Th were 42.9–73.2 and 58.2 Bq kg−1, respectively. 40K activity was in the range of 470.9–754.9 Bq kg−1 with the mean of 595.2 Bq kg−1. The air kerma rate (AKR) at 1 m height from the ground was also measured using gamma survey meter in all the sampling locations, which was ranging from 92.1 to 122.8 nGy h−1 with the mean of 110.6 nGy h−1. The radiological parameters such as Raeq and activity index of the soil samples were also evaluated, which are the tools to assess the external radiation hazard due to building materials. The mean and range of the Raeq values were 168.7 and 132.9–210.4 Bq kg−1, respectively, whereas the activity index varied from 0.5 to 0.8 with the mean value of 0.62. These indices show that the indoor external dose due to natural radioactivity in the soil used for the construction will not exceed the dose criteria. The AKR was also evaluated from soil activity concentration and altitude correction of cosmic radiation contribution. The statistical tests such as Pearson correlation, spearman rank correlation, box and whisker plot, the Wilcoxon/Mann–Whitney test and chi-square test, were used to compare the measured AKR with evaluated AKR, which indicates good correlation.  相似文献   
342.
A simple and surfactant-free synthesis of novel heterostructures comprising of copper oxide (CuO) nanowires uniformly decorated with cobalt oxide (Co3O4) nanoparticles was demonstrated by combining thermal growth and wet-coating method. The heterostructures were synthesized by thermally decomposing cobalt salt (cobalt nitrate) into Co3O4 nanoparticles onto vapor–solid (VS)-grown CuO nanowires. X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM) confirmed the presence of CuO and Co3O4 phases as well as a narrow size distribution of Co3O4 nanoparticles (average diameter ~7.0 ± 1.5 nm) on CuO nanowires (average diameter of nanowire tips ~67.9 ± 18.6 nm). Unique interfacial lattice relationship was observed for (111) Co3O4 nanoparticles on (200) CuO nanowire surface resulting in hemispherical shape of the former. For the first time, further systematic studies were performed to understand the influence of various parameters (cobalt salt concentration and annealing temperature, atmosphere, and time) on the morphological evolution of Co3O4 nanoparticles on CuO nanowires. Interestingly, by varying these parameters, it was possible to grow Co3O4 in different shapes (spherical, triangular, rectangular, cubical, and hexagonal nanoparticles) and forms (shells and nanorods). It was observed that all these parameters play a critical role in influencing the surface migration, nucleation, and growth of Co3O4 nanoparticles on CuO nanowires and this assisted in understanding the involved growth mechanisms. Finally, UV–vis–NIR spectroscopy and band gap energies for these heterostructures were evaluated that showed higher photocatalytic degradation efficiency for Rhodamine B under low-power visible-light illumination.  相似文献   
343.
Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.  相似文献   
344.
Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6–40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.  相似文献   
345.
In order to conduct electrical studies on organic thin film transistors, top-contact devices are fabricated by growing polycrystalline films of freshly synthesized pentacene over Si/SiO2 substrates with two different channel widths under identical conditions. Reasonable field effect mobilities in order of 10^-2-10^-3 cm^2V^-1s^-1 are obtained in these devices. An elaborative electrical characterization of all the devices is undertaken to study the variance in output saturation current, field effect mobility, and leakage current with aging under ambient conditions. As compared to the devices with longer channel width, the devices with shorter channel width exhibit better electrical performance initially. However, the former devices sustain the moderate performance much longer than the latter ones.  相似文献   
346.
Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure–activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules’ potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.  相似文献   
347.
The recent coronavirus disease (COVID-19) outbreak in Wuhan, China, has led to millions of infections and the death of approximately one million people. No targeted therapeutics are currently available, and only a few efficient treatment options are accessible. Many researchers are investigating active compounds from natural plant sources that may inhibit COVID-19 proliferation. Flavonoids are generally present in our diet, as well as traditional medicines and are effective against various diseases. Thus, here, we reviewed the potential of flavonoids against crucial proteins involved in the coronavirus infectious cycle. The fundamentals of coronaviruses, the structures of SARS-CoV-2, and the mechanism of its entry into the host’s body have also been discussed. In silico studies have been successfully employed to study the interaction of flavonoids against COVID-19 Mpro, spike protein PLpro, and other interactive sites for its possible inhibition. Recent studies showed that many flavonoids such as hesperidin, amentoflavone, rutin, diosmin, apiin, and many other flavonoids have a higher affinity with Mpro and lower binding energy than currently used drugs such as hydroxylchloroquine, nelfinavir, ritonavir, and lopinavir. Thus, these compounds can be developed as specific therapeutic agents against COVID-19, but need further in vitro and in vivo studies to validate these compounds and pave the way for drug discovery.  相似文献   
348.
Mechanochemical synthesis via grinding of trimesic acid (TA, C9H6O6) and 4-chlorophenyl diphenyl phosphate (4CDP, C18H14ClO4P) (liquid at room temperature) in a 1:1 ratio resulted in the formation of an inclusion type of cocrystal. The crystallization of this phase via slow evaporation at low temperature (276–277 K) from methanol resulted in a rare `stairstep morphology' during the process of crystal growth. This morphology was not observed after crystallization of the compound from other solvents like toluene, dichloromethane, acetone, hexane and isooctane, and hence this was characteristically observed in methanol only. The characterization from single-crystal X-ray diffraction revealed the formation of a cocrystal with five molecules of TA and two molecules of 4CDP in the asymmetric unit. The trimesic acid molecules form hydrogen-bonded dimers resulting in hexagonal rings, and these rings are stacked through π–π intermolecular interactions to make a hexagonal honeycomb-like structure. The phosphate molecules, 4CDP, were found to be trapped as guests in these hexagonal channels. The similarity in the packing of trimesic acid is compared in the cocrystal and the free acid quantitatively viaXpac analysis, which establishes the relationship of a `2D supramolecular construct' between them. This signifies a unique type of arrangement in which the voids created by the trimesic acid moiety do not undergo distortion by the inclusion of the guest molecules. The quantitative analysis of the intermolecular interactions using Hirshfeld surfaces and fingerprint plots deciphers the role of both strong O—H…O hydrogen bonds and weak intermolecular interactions in the crystal packing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号