首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2041篇
  免费   40篇
  国内免费   6篇
化学   1408篇
晶体学   30篇
力学   43篇
数学   354篇
物理学   252篇
  2022年   18篇
  2021年   16篇
  2020年   25篇
  2019年   21篇
  2018年   14篇
  2016年   23篇
  2015年   27篇
  2014年   35篇
  2013年   71篇
  2012年   62篇
  2011年   96篇
  2010年   42篇
  2009年   44篇
  2008年   91篇
  2007年   96篇
  2006年   83篇
  2005年   71篇
  2004年   72篇
  2003年   73篇
  2002年   65篇
  2001年   29篇
  2000年   20篇
  1999年   19篇
  1998年   26篇
  1997年   27篇
  1996年   42篇
  1995年   33篇
  1994年   25篇
  1993年   29篇
  1992年   26篇
  1991年   18篇
  1990年   21篇
  1989年   26篇
  1988年   19篇
  1987年   28篇
  1986年   22篇
  1985年   44篇
  1984年   38篇
  1983年   37篇
  1982年   38篇
  1981年   31篇
  1979年   27篇
  1978年   38篇
  1977年   32篇
  1976年   33篇
  1975年   36篇
  1974年   24篇
  1973年   21篇
  1972年   14篇
  1966年   16篇
排序方式: 共有2087条查询结果,搜索用时 46 毫秒
71.
One problem associated with using bare solid metal electrodes, such as gold and platinum, in stripping analysis to determine heavy metal ions such as lead and copper ions in dilute solutions is that underpotential deposition (UPD) gives multiple stripping peaks in the analysis of mixtures. These peaks are often overlapped and cannot be conveniently used for analytical purposes. Bifunctional alkylthiols, such as 3-mercaptopropionic acid, with an ionizable group on the other terminal end of the thiol can form self-assembled monolayers (SAMs) on the surface of the gold electrode. It is shown that such an SAM-modified gold electrode minimizes the UPD effects for the stripping analysis of lead and copper. The anodic peak potential shifts and the peak shape changes, indicating that the SAM changes the deposition and stripping steps of these heavy metal ions. Thus, the sensitivity levels for both single species and mixtures can be significantly improved for the conventional solid electrodes. The mechanism of the deposition reaction at the SAM-modified gold electrodes is discussed. Received: 29 May 1997 / Accepted: 24 June 1997  相似文献   
72.
Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calculations were made for this species and related ring-opened products as a reference for 2 and 3 and their reactions. Radicals 1-3 have practical utility as "radical clocks" that can be used to time other radical reactions. Radical 3 is of further interest in photoelectron-transfer processes where the back-electron-transfer process may be suppressed by rapid ring opening. Calculations have been carried out at the UHF/6-31G*, MP4//MP2/6-31G*, DFT B3LYP/6-31G*, and CCSD(T)/cc-pVTZ//QCISD/cc-pVDZ levels. Energies are corrected to 298 K, and the barriers between species are reported in terms of Arrhenius E(a) and log A values along with differences in enthalpies, free energies, and entropies. The CCSD(T)-calculated energy barrier for ring opening of 1 is E(a) = 9.70, DeltaG* = 8.49 kcal/mol, which compares favorably to the previously calculated value of E(a) = 9.53 kcal/mol by the G2 method, but is higher than an experimental value of 7.05 kcal/mol. Our CCSD(T)-calculated E(a) value is also higher by 1.8 kcal/mol than a previously reported CBS-RAD//B3LYP/6-31G* calculation. The cyclopropoxy radical has a very small barrier to ring opening (CCSD(T), E(a) = 0.64 kcal/mol) and should be a very sensitive time clock. Of the three series studied, the cyclopropylaminium radical cation is most complex. In agreement with experimental data, bisected cyclopropylaminium radical cation is not found, but instead a ring-opened species is found. A perpendicular cyclopropylaminium radical cation (4) was found as a transition-state structure. Rotation of the 2p orbital in 4 to the bisected array results in ring opening. The minimum onset energy of photoionization of cyclopropylamine was calculated to be 201.5 kcal/mol (CCSD(T)) compared to experimental values of between about 201 and 204 kcal/mol. Calculations were made on the closely related cyclopropylcarbinyl and bicyclobutonium cations. Stabilization of the bisected cyclopropylcarbinyl conformer relative to the perpendicular species is much greater for the cations (29.1 kcal/ mol, QCISD) compared to the radicals (3.10 kcal/mol, QCISD). A search was made for analogues to the bicyclobutonium cation in the radical series 1 and 2 and the radical cation series 3. No comparable species were found. A rationale was made for some conflicting calculations involving the cyclopropylcarbinyl and bicyclobutonium cations. The order of stability of the cyclopropyl-X radicals was calculated to be X = CH2 > X = O > X = NH2+, where the latter species has no barrier for ring opening. The relative rate of ring opening for cyclopropyl-X radicals X = CH2 to X = O was calculated to be 3.1 x 10(6) s(-1) at 298 K (QCISD).  相似文献   
73.
A stereocontrolled approach to alpha-alkyl beta-alkynyl cyclohexanones is reported through a Lewis acid mediated rearrangement reaction of enol ethers bearing an Co-alkyne moiety. The reaction proceeds with high levels of stereoselectivity in the presence of Ti- and B-Lewis acids to provide a range of alpha,beta-disubstituted cyclohexanones in high yield although the products are prone to epimerization at the alpha-position in the presence of the B-promoter system. The potential for an enantioselective variant of this process is outlined, and a rationale for the observed stereochemical trends and detailed structural analyses of the ketone products are described.  相似文献   
74.
75.
76.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   
77.
A series of conjugated polyrotaxane insulated molecular wires are synthesised by aqueous Suzuki polymerisation, using hydrophobic binding to promote threading of the cyclodextrin units. These polyrotaxanes have conjugated polymer cores based on poly(para-phenylene), polyfluorene, and poly(diphenylene-vinylene), threaded through 0.9-1.6 cyclodextrins per repeat unit. Bulky naphthalene-3,6-disulfonate endgroups prevent the macrocycles from slipping off the conjugated polymer chains. Dialysis experiments show that the cyclodextrins become unthreaded only if smaller stoppers are used. MALDI TOF mass spectra detect oligomers with up to ten threaded cyclodextrins, and reveal the presence of some defects that result for oxidative homo-coupling of boronic acids. Weight-average molecular weights were determined by analytical ultracentrifugation, demonstrating that step-growth polymerisation is efficient enough to achieve degrees of polymerisation up to approximately 20 repeat units (84 para-phenylenes). The fluorescence spectra of these polyrotaxanes indicate that the presence of the threaded cyclodextrin macrocycles reduces the flexibility of the conjugated polymer pi-systems. Both the solution and the solid-state photoluminescence quantum yields are enhanced upon threading of the conjugated polyaromatic cores through alpha- or beta-cyclodextrins, and the emission spectra of the polyrotaxanes are blue-shifted compared to the corresponding unthreaded polymers. The greater weight of the 0-0 transition in the emission spectra, as well as the smaller Stokes shift, indicate that the polyrotaxanes are more rigid than the unthreaded polymers.  相似文献   
78.
The synthesis of 2,4,6-cycloheptatrienethione ( 1 ) was accomplished by reaction of tropone and phosphorus pentasulfide. Although 1 proved to be extremely unstable in concentrated solution, its UV. spectrum was measured, the ε-values being determined indirectly by hydrolysis to tropone. The proof of structure rests on analytical data, conversion to tropone oxime on reaction with hydroxylamine and reaction with the sodium salt of malonitrile to give 2-amino-3-cyano-3aH-cyclohepta[b]thiophene ( 4 ) which rearranged on chromatography to give what is probably the corresponding 8H-compound ( 5 ). On dissolving 1 in 95% sulfuric acid, a large hypsochromic shift in the UV. spectrum was observed, which may be due to the mercaptotropylium ion.  相似文献   
79.
Near-UV irradiation of structurally characterized [Re(I)(CO)3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/Y108W)AzM(II) [Az = Pseudomonas aeruginosa azurin, M = Cu, Zn]/[Co(NH3)5Cl]Cl2 produces a tryptophan radical (W108*) with unprecedented kinetic stability. After rapid formation (k = 2.8 x 106 s-1), the radical persists for more than 5 h at room temperature in the folded ReAzM(II) structure. The absorption spectrum of ReAz(W108*)M(II) exhibits maxima at 512 and 536 nm. Oxidation of K4[Mo(CN)8] by ReAz(W108*)Zn(II) places the W108*/W108 reduction potential in the protein above 0.8 V vs NHE.  相似文献   
80.
Thermolysis of trans-chloro(2-allylphenyl)bis(triethylphosphine)nickel(II), I, in tetrachloroethylene has afforded indene as the major hydrocarbon product along with lesser amounts of allylbenzene and trans-β-methylstyrene. Organonickel products were trans-chloro(trichlorovinyl)bis(triethylphosphine)nickel(II), II, chloro[2-(trans-propenyl)phenyl]bis(triethylphosphine)nickel(II), III, and trans-dichlorobis(triethylphosphine)nickel(II). Compound III was the major product from thermolysis of I in benzene. Chloro[2-(cis-propenyl)phenyl]bis(triethylphosphine)nickel(II), IV, and III could be synthesized independently by treatment of chloro-2-(cis-propenyl)benzene and chloro-2-(trans-propenyl)benzene, respectively, with nickel acetylacetonate and triethylaluminium in the presence of triethylphosphine. Thermolysis of I in benzene containing allylbenzene led to the formation of trans-β-methylstyrene. The thermolysis of I in benzene in the presence of cis-1,4-hexadiene caused the skeletal rearrangement of the diene to trans-2-methyl-1,3-pentadiene. A catalyst derived from ethylenebis(triphenylphosphine)nickel(0) and hydrogen chloride isomerized allylbenzene to trans-β-methylstyrene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号