首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   3篇
化学   57篇
力学   1篇
数学   1篇
物理学   17篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1967年   1篇
  1939年   1篇
排序方式: 共有76条查询结果,搜索用时 12 毫秒
31.
32.
Alkynes usually oligomerize to give rings with a conjugated π‐electron system. In contrast, phosphaalkynes, R?C≡P, frequently give compounds with polycyclic structures, which are thermodynamically more stable than the corresponding π‐conjugated isomers. The syntheses of the first C3P3 tricyclic compounds are reported with either radical or cationic ground states stabilized by cyclic (alkyl)(amino)carbenes (CAACs). These compounds may be considered as examples of tricarbontriphosphide coordinated by carbenes and are likely formed via trimerization of the corresponding mono‐radicals CAAC‐CP.. The mechanism for the formation of these tricarbontriphosphide radicals has been rationalized by a combination of experiments and DFT calculations.  相似文献   
33.
34.
Parrondo's games present an apparently paradoxical situation where individually losing games can be combined to win. In this article we analyze the case of two coin tossing games. Game B is played with two biased coins and has state-dependent rules based on the player's current capital. Game B can exhibit detailed balance or even negative drift (i.e., loss), depending on the chosen parameters. Game A is played with a single biased coin that produces a loss or negative drift in capital. However, a winning expectation is achieved by randomly mixing A and B. One possible interpretation pictures game A as a source of "noise" that is rectified by game B to produce overall positive drift-as in a Brownian ratchet. Game B has a state-dependent rule that favors a losing coin, but when this state dependence is broken up by the noise introduced by game A, a winning coin is favored. In this article we find the parameter space in which the paradoxical effect occurs and carry out a winning rate analysis. The significance of Parrondo's games is that they are physically motivated and were originally derived by considering a Brownian ratchet-the combination of the games can be therefore considered as a discrete-time Brownian ratchet. We postulate the use of games of this type as a toy model for a number of physical and biological processes and raise a number of open questions for future research. (c) 2001 American Institute of Physics.  相似文献   
35.
Synchrotron‐based photoemission electron microscopy (PEEM; probing the surface region) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS; probing the uppermost surface layer) have been used to image naturally heterogeneous samples containing chalcopyrite (CuFeS2), pentlandite [(Ni,Fe)9S8] and monoclinic pyrrhotite (Fe7S8) both freshly polished and exposed to pH 9 KOH for 30 min. PEEM images constructed from the metal L3 absorption edges were acquired for the freshly prepared and solution‐exposed mineral samples. These images were also used to produce near‐edge X‐ray absorption fine‐structure spectra from regions of the images, allowing the chemistry of the surface of each mineral to be interrogated, and the effect of solution exposure on the mineral surface chemistry to be determined. The PEEM results indicate that the iron in the monoclinic pyrrhotite oxidized preferentially and extensively, while the iron in the chalcopyrite and pentlandite underwent only mild oxidation. The ToF‐SIMS data gave a clearer picture of the changes happening in the uppermost surface layer, with oxidation products being observed on all three minerals, and significant polysulfide formation and copper activation being detected for pyrrhotite.  相似文献   
36.
The structure of Cu(II) complex 3 formed within the course of a stereoselective Diels-Alder reaction was investigated by EXAFS, CW-EPR at X- and W-band, HYSCORE, pulsed ENDOR, and UV-vis spectroscopy. The experimental techniques indicate that the chiral bis(sulfoximine) ligand (S,S)-1 and the dienophile form a tetragonally distorted complex in CH(2)Cl(2). The ligand binds to the Cu(II) center via the imine nitrogens, whereas the dienophile interacts via the carbonyl oxygen atoms. The additional sites of the first coordination sphere are occupied by counterions and, presumably, solvent molecules. At the axial position, a triflate anion binds via an oxygen atom.  相似文献   
37.
38.
The solution chemistry and aggregation mechanisms involved in sol-gel synthesis of potassium titanyl phosphate (KTP) are studied in detail. The chemistry of the metal precursors are shown to be critical for the formation of the desired KTP phase. The precursor solution as well as some preparation intermediates were studied by several spectroscopic methods to determine the structure of the organometallic species present in these solutions. The structural evolution taking place in the solution after hydrolysis was studied using photon correlation spectroscopy and small angle X-ray scattering techniques. The influence on the gelation of several preparation parameters such as, the precursors chemistry, the mixing order of the metal alkoxides, the solvent/KTP ratio and the water/KTP molar ratio was also examined.  相似文献   
39.
The reactivity of high-Fe containing sphalerite (Zn1−xFexS), the major source of Zn, is of great interest for industrial applications. Since the initial reactivity depends on the physical and chemical properties of the surface, it is important to understand the structure of cleaved and fractured surfaces. Zn1−xFexS zincblende (1 1 0) oriented samples cleaved in air and in vacuum were studied with medium energy ion scattering (MEIS) in order to study surface relaxation and reconstruction associated with the possible formation of S dimers. The experimental results are presented together with ion scattering Monte Carlo simulations that have been performed using the different models of the surface structure. The MEIS blocking patterns are different for the air- and vacuum-cleaved specimens. Models for the air-cleaved samples found S atoms in the first layer that are relaxed outwards by 0.08 Å and Zn(Fe) atoms relaxed inwards by 0.51 Å, with some lateral translation of both species. Results for the vacuum-cleaved sample indicate S atoms have been displaced laterally by 0.5 Å at the surface. X-ray photoelectron spectroscopic (XPS) measurements provide evidence for a high binding energy species indicative of S-S bonds in the near-surface region that are consistent with the ion scattering structural data for both cleaving protocols.  相似文献   
40.
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ~10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multifrequency EPR measurements to interrogate the microscopic nature and dynamics of ultrafast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号