首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8337篇
  免费   1359篇
  国内免费   677篇
化学   5711篇
晶体学   90篇
力学   493篇
综合类   36篇
数学   998篇
物理学   3045篇
  2024年   12篇
  2023年   166篇
  2022年   244篇
  2021年   268篇
  2020年   364篇
  2019年   314篇
  2018年   271篇
  2017年   252篇
  2016年   415篇
  2015年   410篇
  2014年   454篇
  2013年   578篇
  2012年   773篇
  2011年   751篇
  2010年   531篇
  2009年   488篇
  2008年   549篇
  2007年   418篇
  2006年   455篇
  2005年   330篇
  2004年   262篇
  2003年   218篇
  2002年   172篇
  2001年   138篇
  2000年   146篇
  1999年   174篇
  1998年   154篇
  1997年   127篇
  1996年   131篇
  1995年   112篇
  1994年   95篇
  1993年   79篇
  1992年   78篇
  1991年   76篇
  1990年   44篇
  1989年   38篇
  1988年   39篇
  1987年   35篇
  1986年   28篇
  1985年   21篇
  1984年   20篇
  1983年   21篇
  1982年   9篇
  1981年   14篇
  1980年   9篇
  1977年   6篇
  1976年   10篇
  1975年   9篇
  1973年   8篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
One-pot anti-Mannich reaction of vanillin, aniline and cyclohexanone was successfully catalyzed by ionic liquid triethanolammonium chloroacetate, at room temperature. Yield of the obtained Mannich base was very good and excellent diastereoselectivity was achieved. Mechanism of the reaction was investigated using the density functional theory. The reaction started with a nucleophilic attack of aniline nitrogen at the carbonyl group of vanillin. The intermediate α-amino alcohol formed in this way was further subjected to protonation by the triethanolammonium ion yielding the imminium ion. Theoretically, the obtained imminium ion and the enol form of cyclohexanone can build the protonated Mannich base via the anti and syn pathways. The chloroacetic anion spontaneously abstracts the proton yielding the final product of the reaction anti 2-[1-(N-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (MB-H). The syn pathway requires lower activation energy but the anti pathway yields a thermodynamically more stable product, which implies that the examined Mannich reaction is thermodynamically controlled.  相似文献   
992.
Here it is reported that crystals of an enantiopure [7]helquat salt undergo reversible thermal solid–solid phase transition at 404 K. Differential scanning calorimetry (DSC), capillary electrophoresis (CE), and X‐ray diffraction analysis were used to unravel the mechanistic details of this process. The single‐crystal‐to‐single‐crystal course enabled direct monitoring of the structural changes by in situ variable‐temperature X‐ray diffraction, thus providing the first direct evidence of a solid phase transition in a helicene‐like compound.  相似文献   
993.
A robust and reliable method for improving the photocatalytic performance of InP, which is one of the best known materials for solar photoconversion (i.e., solar cells). In this article, we report substantial improvements (up to 18×) in the photocatalytic yields for CO2 reduction to CO through the surface passivation of InP with TiO2 deposited by atomic layer deposition (ALD). Here, the main mechanisms of enhancement are the introduction of catalytically active sites and the formation of a pn‐junction. Photoelectrochemical reactions were carried out in a nonaqueous solution consisting of ionic liquid, 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM]BF4), dissolved in acetonitrile, which enables CO2 reduction with a Faradaic efficiency of 99 % at an underpotential of +0.78 V. While the photocatalytic yield increases with the addition of the TiO2 layer, a corresponding drop in the photoluminescence intensity indicates the presence of catalytically active sites, which cause an increase in the electron‐hole pair recombination rate. NMR spectra show that the [EMIM]+ ions in solution form an intermediate complex with CO2?, thus lowering the energy barrier of this reaction.  相似文献   
994.
995.
996.
997.
998.
By integrating photoinduced electron transfer (PET) into the design of functional bioluminogenic probes, Urano and his coworkers recently developed a new rational design strategy, BioLeT. It is expected that this BioLeT strategy will enable us to design and develop new bioluminescence probes for detecting various biomolecules with no catalytic or reactive activity.  相似文献   
999.
With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the performance of multivariate calibrations.Similar to integral order Savitzky–Golay differentiation(IOSGD),FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients.Three NIR datasets including diesel,wheat and corn datasets were utilized to test this method.The results showed that FOSGD,which is easy to compute,is a general method to obtain Savitzky–Golay smoothing,fractional order and integral order differentiations.Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones,especially for physical properties of interest,such as density,cetane number and hardness.  相似文献   
1000.
The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号