首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10052篇
  免费   2170篇
  国内免费   1426篇
化学   7503篇
晶体学   177篇
力学   603篇
综合类   121篇
数学   1045篇
物理学   4199篇
  2024年   53篇
  2023年   303篇
  2022年   494篇
  2021年   603篇
  2020年   594篇
  2019年   564篇
  2018年   466篇
  2017年   420篇
  2016年   555篇
  2015年   678篇
  2014年   737篇
  2013年   848篇
  2012年   1012篇
  2011年   959篇
  2010年   662篇
  2009年   697篇
  2008年   732篇
  2007年   595篇
  2006年   539篇
  2005年   418篇
  2004年   308篇
  2003年   219篇
  2002年   217篇
  2001年   156篇
  2000年   146篇
  1999年   113篇
  1998年   98篇
  1997年   71篇
  1996年   67篇
  1995年   47篇
  1994年   39篇
  1993年   42篇
  1992年   33篇
  1991年   19篇
  1990年   23篇
  1989年   19篇
  1988年   14篇
  1987年   17篇
  1986年   19篇
  1985年   15篇
  1984年   11篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1971年   2篇
  1966年   2篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Docking simulation of 18 agonists with the ligand binding pocket (LBP) of PPARγ has been performed. The binding conformations and binding affinities of these agonists were obtained by use of the flexible docking protocol FlexX. Test compound calculations indicated that FlexX can reproduce the binding conformation of the crystal structure (root mean square deviation = 1.43 Å); moreover, the predicted binding affinities correlate well with the activities of these agonists. The interaction model and pharmacophore of PPARγ agonists were derived and the difference in biologic activities of these agonists can be well explained. The PPARγ agonists must have both polar head and the hydrophobic tail, which form hydrogen bonds and hydrophobic contacts with hydrophilic and hydrophobic regions of the LBP of PPARγ, respectively. In addition, a suitable linker is also necessary. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 405–410, 2003  相似文献   
992.
Amino analogs of BAU (5-benzylacyclouridine) and BBAU (5-benzyloxybenzylacyclouridine) and their 2′-hydroxymethyl derivatives were synthesized for evaluation as inhibitors of uridine phosphorylase and hence potential cancer chemotherapeutic agents. Both aminomethyl analogs were found to be potent inhibitors of this enzyme and good potentiators of the anti-tumor action of FUdR.  相似文献   
993.
Terahertz (THz) absorption is a fingerprint property of materials, due to the underlying low-frequency vibration/phonon modes being strongly dependent on the chemical constitutions and microscopic structures. The low excitation energies (0.414-41.4 meV) are related to two intrinsic properties of THz vibrations: the potential energy surfaces (PESs) are shallow, and the vibrationally excited states are usually populated via thermal fluctuations. The shallow PESs make the vibrations usually anharmonic, leading to redshifted vibrational excited state absorption; combined with considerable vibrational excited states population, characteristic THz signals are usually redshifted and congested with varying degrees at different temperatures. Combining existing experimental THz spectra at low temperatures, first principles vibration analysis, and the Morse potential, we developed a semi-empirical model to evaluate the anharmonicity of the low-frequency modes. The model was benchmarked with purine molecular crystal to generate THz spectra at different temperatures, the results were consistent with experiments. The good agreement suggests this model would facilitate the application of THz spectroscopy in molecular crystal characterization.  相似文献   
994.
Supercapacitor represents an important electrical energy storage technology with high-power performance and superior cyclability. However, currently commercialized supercapacitors still suffer limited energy densities. Here we report an unprecedentedly respiring supercapacitor with chlorine gas iteratively re-inspires in porous carbon materials, that improves the energy density by orders of magnitude. Both electrochemical results and theoretical calculations show that porous carbon with pore size around 3 nm delivers the best chlorine evolution and adsorption performance. The respiring supercapacitor with multi-wall carbon nanotube as the cathode and NaTi2(PO4)3 as the anode can store specific energy of 33 Wh kg−1 with negligible capacity loss over 30 000 cycles. The energy density can be further improved to 53 Wh kg−1 by replacing NaTi2(PO4)3 with zinc anode. Furthermore, thanks to the extraordinary reaction kinetics of chlorine gas, this respiring supercapacitor performs an extremely high-power density of 50 000 W kg−1.  相似文献   
995.
This paper reports a method for determining the carbonate content in barite ore using headspace gas chromatography. Based on the acidification reaction, the carbonate in the barite ore was converted to CO2 in a closed headspace vial. When the carbonate content was significant, the pressure caused changes in the CO2 and O2 signals and affected the measurement accuracy. It was found that carbonate content is proportional to the intensity ratio of the CO2 to O2 signals. Thus, the carbonate content in barite ore can be measured indirectly using a theoretical model. The results showed that the carbonate in 3 g of barite ore sample with a particle size of 74 μm could react completely with a hydrochloric acid solution (2 mol/L) at 65°C for 5 min. The method described herein had good precision (relative standard deviation < 4.14%) and accuracy (relative differences < 6.12%). Further, the limit of quantification was 0.07 mol/L. Owing to its simplicity and speed, this method can be used for the batch determination of carbonate content in barite ore.  相似文献   
996.
Developing a highly stable and dendrite-free zinc anode is essential to the commercial application of zinc metal batteries. However, the understanding of zinc dendrites formation mechanism is still insufficient. Herein, for the first time, we discover that the interfacial heterogeneous deposition induced by lattice defects and epitaxial growth limited by residual stress are intrinsic and critical causes for zinc dendrite formation. Therefore, an annealing reconstruction strategy was proposed to eliminate lattice defects and stresses in zinc crystals, which achieve dense epitaxial electrodeposition of zinc anode. The as-prepared annealed zinc anodes exhibit dendrite-free morphology and enhanced electrochemical cycling stability. This work first proves that lattice defects and residual stresses are also very important factors for epitaxial electrodeposition of zinc in addition to crystal orientation, which can provide a new mechanism for future researches on zinc anode modification.  相似文献   
997.
The dual-ratiometric thermometry is one of highly accurate methods for microscopic thermal measurement in biological systems. Herein, a series of chromone derivatives with noncovalently intramolecular interactions (NIIs) were designed and synthesized for ratiometric thermometers. The triplet states of these organic compounds were systematically tuned upon regulating the conformation with NIIs to yield efficient room temperature phosphorescence and large wavelength difference between fluorescence and phosphorescence simultaneously. As a result, an unprecedent organic 3D dual-ratiometric thermometer was established based on the intensity ratio and lifetime ratio of fluorescence/phosphorescence vs temperature, which was used for in vitro and in vivo bio-thermometry with high accuracy. This work provides a novel method to achieve organic dual ratiometric thermometers via tuning the triplet excited states.  相似文献   
998.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   
999.
Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2) reduction half-reaction and the water (H2O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust −C=C− bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron–hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g−1 h−1 with about 100 % selectivity) and oxygen (O2) evolution (90.2 μmol g−1 h−1) among all the porous catalysts in CO2 reduction with H2O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure–function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.  相似文献   
1000.
The bimetallic, decanuclear Ni3Ga7-cluster of the formula [Ni3(GaTMP)3(μ2-GaTMP)3(μ3-GaTMP)] ( 1 , TMP=2,2,6,6-tetramethylpiperidinyl) reacts reversibly with dihydrogen under the formation of a series of (poly-)hydride clusters 2 . Low-temperature 2D NMR experiments at −80 °C show that 2 consist of a mixture of a di- ( 2Di ), tetra- ( 2Tetra ) and hexahydride species ( 2Hexa ). The structures of 2Di and 2Tetra are assessed by a combination of 2D NMR spectroscopy and DFT calculations. The cooperation of both metals is essential for the high hydrogen uptake of the cluster. Polyhydrides 2 are catalytically active in the semihydrogenation of 4-octyne to 4-octene with good selectivity. The example is the first of its kind and conceptually relates properties of molecular, atom-precise transition metal/main group metal clusters to the respective solid-state phase in catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号