首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38579篇
  免费   409篇
  国内免费   301篇
化学   17317篇
晶体学   282篇
力学   1520篇
综合类   13篇
数学   10951篇
物理学   9206篇
  2019年   95篇
  2018年   1236篇
  2017年   1480篇
  2016年   874篇
  2015年   710篇
  2014年   682篇
  2013年   1020篇
  2012年   3335篇
  2011年   2518篇
  2010年   1995篇
  2009年   1725篇
  2008年   809篇
  2007年   839篇
  2006年   859篇
  2005年   4672篇
  2004年   4123篇
  2003年   2524篇
  2002年   731篇
  2001年   467篇
  2000年   256篇
  1999年   282篇
  1998年   217篇
  1997年   200篇
  1996年   177篇
  1995年   158篇
  1994年   169篇
  1993年   166篇
  1992年   313篇
  1991年   273篇
  1990年   264篇
  1989年   241篇
  1988年   237篇
  1987年   197篇
  1986年   161篇
  1985年   264篇
  1984年   227篇
  1983年   151篇
  1982年   188篇
  1981年   175篇
  1980年   211篇
  1979年   224篇
  1978年   222篇
  1977年   248篇
  1976年   265篇
  1975年   207篇
  1974年   175篇
  1973年   234篇
  1972年   135篇
  1971年   115篇
  1970年   104篇
排序方式: 共有10000条查询结果,搜索用时 526 毫秒
31.
32.
33.
We prove that RANDOM EDGE, the simplex algorithm that always chooses a random improving edge to proceed on, can take a mildly exponential number of steps in the model of abstract objective functions (introduced by Williamson Hoke [Completely unimodal numberings of a simple polytope, Discrete Appl. Math. 20 (1988) 69-81.] and by Kalai [A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49(2) (1988) 381-383.] under different names). We define an abstract objective function on the n-dimensional cube for which the algorithm, started at a random vertex, needs at least exp(const·n1/3) steps with high probability. The best previous lower bound was quadratic. So in order for RANDOM EDGE to succeed in polynomial time, geometry must help.  相似文献   
34.
After a discussion of a space of test functions and the corresponding space of distributions, a family of Banach spaces (B, ∥ ∥B) in standard situation is described. These are spaces of distributions having a pointwise module structure and also a module structure with respect to convolution. The main results concern relations between the different spaces associated to B established by means of well-known methods from the theory of Banach modules, among them B0 and B?, the closure of the test functions in B and the weak relative completion of B, respectively. The latter is shown to be always a dual Banach space. The main diagram, given in Theorem 4.7, gives full information concerning inclusions between these spaces, showing also a complete symmetry. A great number of corresponding formulas is established. How they can be applied is indicated by selected examples, in particular by certain Segal algebras and the Ap-algebras of Herz. Various further applications are to be given elsewhere.  相似文献   
35.
Ohne ZusammenfassungHerrn E. Heinz zum 65. Geburtstag gewidmet  相似文献   
36.
Ohne ZusammenfassungDiese Arbeit wurde während eines Aufenthaltes von Schmidt in der Bundesrepublik Deutschland als Preisträger der Alexander von Humboldt-Stiftung geschrieben.  相似文献   
37.
This paper establishes a link between a generalized matrix Matsumoto-Yor (MY) property and the Wishart distribution. This link highlights certain conditional independence properties within blocks of the Wishart and leads to a new characterization of the Wishart distribution similar to the one recently obtained by Geiger and Heckerman but involving independences for only three pairs of block partitionings of the random matrix.In the process, we obtain two other main results. The first one is an extension of the MY independence property to random matrices of different dimensions. The second result is its converse. It extends previous characterizations of the matrix generalized inverse Gaussian and Wishart seen as a couple of distributions.We present two proofs for the generalized MY property. The first proof relies on a new version of Herz's identity for Bessel functions of matrix arguments. The second proof uses a representation of the MY property through the structure of the Wishart.  相似文献   
38.
Some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian.  相似文献   
39.
A method is formulated for the identification of an unknown physical parameter of a fluid-filled pipe using the measurement of sound speed in the pipe. The method uses a simple formula which provides the relationship between the sound speed and a few physical parameters of the pipe: thickness, diameter, wall material constants and fluid constants. Once the sound speed in the pipe is measured, the simple formula can be used to extract one of the unknown parameters providing the remaining ones are known.The sound speed in the pipe is measured using a 3-transducer array. In order to demonstrate the potential of the technique the results of several measurements obtained in a water-filled steel pipe are presented.The required accuracy of the measurement of sound speed and of the specification of known parameters is analysed. The accuracy depends on the unknown parameter which is to be identified. For example, if the pipe thickness is the unknown parameter, the other parameters have to be known within a very narrow margin of error. On the contrary, if the fluid properties have to be identified the needed accuracy of known parameters gets much lower.  相似文献   
40.
The Maximum Cardinality Search (MCS) algorithm visits the vertices of a graph in some order, such that at each step, an unvisited vertex that has the largest number of visited neighbours becomes visited. A maximum cardinality search ordering (MCS-ordering) of a graph is an ordering of the vertices that can be generated by the MCS algorithm. The visited degree of a vertex v in an MCS-ordering is the number of neighbours of v that are before v in the ordering. The visited degree of an MCS-ordering ψ of G is the maximum visited degree over all vertices v in ψ. The maximum visited degree over all MCS-orderings of graph G is called its maximum visited degree. Lucena [A new lower bound for tree-width using maximum cardinality search, SIAM J. Discrete Math. 16 (2003) 345-353] showed that the treewidth of a graph G is at least its maximum visited degree.We show that the maximum visited degree is of size O(logn) for planar graphs, and give examples of planar graphs G with maximum visited degree k with O(k!) vertices, for all kN. Given a graph G, it is NP-complete to determine if its maximum visited degree is at least k, for any fixed k?7. Also, this problem does not have a polynomial time approximation algorithm with constant ratio, unless P=NP. Variants of the problem are also shown to be NP-complete.In this paper, we also propose some heuristics for the problem, and report on an experimental analysis of them. Several tiebreakers for the MCS algorithm are proposed and evaluated. We also give heuristics that give upper bounds on the value of the maximum visited degree of a graph, which appear to give results close to optimal on many graphs from real life applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号