首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   4篇
  国内免费   2篇
化学   54篇
晶体学   6篇
数学   26篇
物理学   37篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
81.
The preparation of a range of 1,5-disubstituted tetrazoles has been achieved through palladium-catalyzed Suzuki coupling. Using appropriately substituted 5-p-toluenesulfonyltetrazoles as substrates (obtained by cycloaddition of a substituted azide with p-toluenesulfonyl cyanide), this methodology provides access to a variety of highly substituted tetrazoles that would be difficult to access otherwise. The procedure is compatible with functional groups commonly found in drug-like molecules, and has been used to generate a number of compounds of potential biological interest.  相似文献   
82.
83.
This work represents Hopf bifurcation analysis of a general non-linear differential equation involving time delay. A special form of this equation is the Hutchinson–Wright equation which is a mile stone in the mathematical modeling of population dynamics and mathematical biology. Taking the delay parameter as a bifurcation parameter, Hopf bifurcation analysis is studied by following the theory in the book by Hazzard et al. By analyzing the associated characteristic polynomial, we determine necessary conditions for the linear stability and Hopf bifurcation. In addition to this analysis, the direction of bifurcation, the stability and the period of a periodic solution to this equation are evaluated at a bifurcation value by using the Poincaré normal form and the center manifold theorem. Finally, the theoretical results are supported by numerical simulations.  相似文献   
84.
85.
86.
87.
2,6-Bis(hydroxymethyl)-4-methyl phenol and 1,4-bis(hydroxymethyl) benzene have been used as crosslinkers in sulphonated poly (ether ether ketone) (SPEEK DS 65%, IEC 1.84 mequiv./g) for the preparation of proton exchange membranes (PEMs). Crosslinking of SPEEK has been achieved by thermally activated bridging of the polymer chain with the hydroxymethyl group of crosslinker through condensation reaction with sulphonic acid group. The physico-chemical properties of uncrosslinked and crosslinked membrane were evaluated in terms of ion exchange capacity (IEC), water uptake, ionic conductivity and mechanical properties. The crosslinked membrane showed controlled swelling, ionic conductivity of 25–50 mS/cm at 80 °C and good mechanical properties. The chemical stability of the crosslinked membranes was studied by Fenton's test. The % loss in weight and changes in physico-chemical properties of the treated membranes were determined.  相似文献   
88.
Sialic acids (Sias) are fascinating nine‐carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak. Over the last decade, several multivalent Sia ligands have been synthesized to modulate their binding affinity with proteins/lectins. In this Minireview, we highlight recent developments in the synthesis of multivalent Sia probes and their potential applications. We will discuss four key multivalent families, that is, polymers, dendrimers, liposomes, and nanoparticles, and will emphasize the major parameters that are essential for the specific interactions of these molecules with proteins in biological systems.  相似文献   
89.
The crystal and molecular structures of an o-hydroxy Schiff base derivative, (E)-2-ethoxy-6-[(2-methoxyphenylimino)methyl]phenol, have been determined by single crystal X-ray diffraction analyses at 296 and 100 K. The results from temperature-dependent structural analysis regarding the tautomeric equilibrium of the compound were interpreted with the aid of quantum chemical calculations. To clarify the tautomerization process and its effects on the molecular geometry, the gas-phase geometry optimizations of two possible tautomers of the title molecule, its OH and NH form, were achieved using DFT calculations with B3LYP method by means of 6-31 + G(d,p) basis set. In order to describe the potential barrier belonging to the phenolic proton transfer, nonadiabatic Potential Energy Surface (PES) scan was performed based on the optimized geometry of the OH tautomeric form by varying the redundant internal coordinate, O–H bond distance. The Harmonic Oscillator Model of Aromaticity (HOMA) indices were calculated in every step of the scan process so as to express the deformation in the aromaticities of principal molecular moieties of the compound. The results show that there is a dynamic equilibrium between the aromaticity level of phenol and chelate ring and furthermore π-electron coupling affecting overall molecule of the title compound. Charge transfer from phenol ring to pseudo-aromatic chelate ring increases with increasing temperature, whereas π-electron transfer from chelate ring to anisole ring is decreased as temperature increases. The most strength intramolecular H-bonds are observed for conformers close to transition state.  相似文献   
90.
The crystal and molecular structure of 2-methyl-4-(4-methoxyphenylazo)phenol have been determined by X-ray single crystal diffraction technique. The compound crystallizes in the monoclinic space group P21/c with a=9.7763(8) Å, b=11.3966(8) Å, c=11.9531(8) Å and β=108.752(6)°. In addition to the molecular geometry from X-ray experiment, its optimized molecular structure has been obtained with the aid of PM3 semiempirical quantum mechanical method, and then the corresponding geometric parameters were compared with those of X-ray crystallography. To determine conformational flexibility and crystal packing effects on the molecules, molecular energy profile of the title compound was obtained with respect to two selected degrees of torsional freedom, which were varied from ?180° to +180° in steps of 10°. Crystal structure of the title compound is a fibroid structure constructed by C–H···O and O–H···N type intermolecular hydrogen bonds. The most favorable conformer of the title compound has been determined by the crystal packing effects and there is no steric hindrance during rotation around the selected torsion angles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号