首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1090篇
  免费   62篇
  国内免费   8篇
化学   880篇
晶体学   14篇
力学   10篇
数学   83篇
物理学   173篇
  2023年   10篇
  2022年   11篇
  2021年   9篇
  2020年   26篇
  2019年   32篇
  2018年   16篇
  2017年   14篇
  2016年   37篇
  2015年   32篇
  2014年   24篇
  2013年   59篇
  2012年   58篇
  2011年   67篇
  2010年   41篇
  2009年   53篇
  2008年   81篇
  2007年   69篇
  2006年   78篇
  2005年   64篇
  2004年   56篇
  2003年   48篇
  2002年   45篇
  2001年   16篇
  2000年   13篇
  1999年   9篇
  1998年   12篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   10篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   15篇
  1983年   8篇
  1982年   15篇
  1981年   14篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1973年   5篇
  1972年   4篇
  1969年   3篇
排序方式: 共有1160条查询结果,搜索用时 15 毫秒
991.
The main features of the local atomic structure of novel Cox/C60 (x相似文献   
992.
993.
ABSTRACT

A transition-state analogue of a renin inhibitor at the scissile site, a dihydroxyethylene isostere of cyclohexylalanine amide, (2S,3R,4S)-4-amino-5-cyclohexyl-1-morpholino-2,3-pentanediol(ACMP), was synthesized from 1,2:5,6-di-O-isopropylidene-α-D-allofuranose stereospecifically.  相似文献   
994.
995.
Accurate equations for calculating the inversion time of the null point (TInull) in inversion recovery (IR) sequences are required for adequate suppression of fat or cerebrospinal fluid (CSF) but are not widely known. The purpose of this study is to elucidate the process of deriving accurate TInull equations using schematic diagrams that allow the equations to be easily understood, and to devise a convenient online tool for instant calculation of TInull.  相似文献   
996.
Chemical and genetic study of Ligularia anoleuca and L. veitchiana, which belong to section Ligularia, series Speciosae, was carried out. From L. anoleuca samples, collected in Yunnan and Sichuan Provinces of China, a new compound, furanoeremophil‐1(10)‐en‐6α‐ol, was isolated together with known 6β‐{[2‐(hydroxymethyl)prop‐2‐enoyl]oxy}furanoeremophil‐1(10)‐ene and 1β,10β‐epoxy‐6β‐{[2‐(hydroxymethyl)prop‐2‐enoyl]oxy}furanoeremophilane. From L. veitchiana samples, collected in Yunnan Province, euparin, 2‐isopropenyl‐5,6‐dimethoxybenzofuran, and 6‐hydroxy‐3β‐methoxytrementone were isolated. DNA Sequencing of the internal transcribed spacers of the ribosomal RNA gene showed that the two species are not particularly close despite morphological similarities, in agreement with the chemical results.  相似文献   
997.
We have investigated the growth of Fe nanostructures on GaN(0 0 0 1) substrates at room temperature using reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and superconducting quantum interference device magnetometer. Initially, a ring RHEED pattern appears, indicating the growth of polycrystalline α-Fe. At around 0.5 nm deposition, the surface displays a transmission pattern from α-Fe films with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[1 −1 1]//GaN[1 1 −2 0] (Kurdjumov-Sachs (KS) orientational relationship). Further deposition to 1 nm results in the appearance of a new spot pattern together with the pattern from domains with the KS orientation relationship. The newly observed pattern shows that Fe layers are formed with the epitaxial relationship of Fe(1 1 0)//GaN(0 0 0 1) and Fe[0 0 1]//GaN[1 1 −2 0] (Nishiyama-Wasserman (NW) orientational relationship). From STM images for Fe layers with the KS and NW orientational relationships, it can be seen that Fe layers with the KS relationship consist of round-shaped Fe nanodots with below 7 nm in average diameter. These nanodots coalesce to form nanodots elongating along the Fe[1 0 0] direction, and they have the KS orientational relationship. Elongated Fe nanodots with the NW relationship show ferromagnetism while round-shaped Fe nanodots with the KS relationship show super-paramagnetic behavior. We will discuss their magnetic properties in connection with the change in crystalline configurations of nanodots.  相似文献   
998.
For a deeper understanding of allyl polymerization mechanism, the reinitiation efficiency of resonance‐stabilized monomeric allyl radical was pursued because in allyl polymerization it is commonly conceived that the monomeric allyl radical generated via the allylic hydrogen abstraction of growing polymer radical from monomer, i.e., “degradative monomer chain transfer,” has much less tendency to initiate a new polymer chain and, therefore, this monomer chain transfer is essentially a termination reaction. Based on the renewed allyl polymerization mechanism in our preceding article, the monomer chain transfer constant in the polymerization of allyl benzoate was estimated to be 2.7 × 10?2 at 80 °C under the polymerization condition, where the coupling termination reaction of growing polymer radical with allyl radical was negligible and, concurrently, the reinitiation reaction of allyl radical was enhanced significantly. The reinitiation efficiencies of monomeric allyl radical were pursued by the dead‐end polymerizations of allyl benzoate at 80, 105, and 130 °C using a small amount of initiators; they increased remarkably with raised temperature. Thus, the enhanced reinitiation reactivity of allyl radical at an elevated temperature could bias the well‐known degradative monomer chain transfer characteristic of allyl polymerization toward the chain transfer in common vinyl polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
999.
Hydroxyethylphosphonate dioxygenase (HEPD) is a mononuclear nonheme iron enzyme that utilizes an O(2) molecule to cleave a C-C bond in 2-hydroxyethylphosphonate and produce hydroxymethylphosphonate (HMP) and formic acid. Density functional theory calculations were performed on an enzyme active-site model of HEPD to understand its catalytic mechanism. The reaction starts with H-abstraction from the C2 position of 2-HEP by a ferric superoxide-type (Fe(III)-OO(?-)) intermediate, in a similar manner to the H-abstraction in the reaction of the dinuclear iron enzyme myo-inositol oxygenase. The resultant Fe(II)-OOH intermediate may follow either a hydroperoxylation or hydroxylation pathway, the former process being energetically more favorable. In the hydroperoxylation pathway, a ferrous-alkylhydroperoxo intermediate is formed, and then its O-O bond is homolytically cleaved to yield a complex of ferric hydroxide with a gem-diol radical. Subsequent C-C bond cleavage within the gem-diol leads to formation of an R-CH(2)(?) species and one of the two products (i.e., formic acid). The R-CH(2)(?) then intramolecularly forms a C-O bond with the ferric hydroxide to provide the other product, HMP. The overall reaction pathway does not require the use of a high-valent ferryl intermediate but does require ferric superoxide and ferric hydroxide intermediates.  相似文献   
1000.
Titanium trifluoride TiF3 has the distorted ReO3 structure composed of corner sharing TiF6 octahedra linked with Ti-F-Ti bridges. Potassium fluoride KF was inserted into the bridges using high-pressure and high-temperature conditions (5 GPa, 1000-1200 °C). When the molar ratio KF/TiF3≥1, a few low dimensional compounds were obtained forming non-bridged F ions. At the composition KF/TiF3=1/2, a new compound KTi2F7 was formed, which crystallizes with the space group Cmmm and the lattice parameters of a=6.371(3), b=10.448(6), c=3.958(2) Å, consisting of edge-sharing pentagonal bipyramids [TiF7] forming ribbons running along the a axis. The ribbons are linked by corners to construct a three-dimensional framework without forming non-bridged F ions. The compound is antiferromagnetic with the Néel temperature TN=75 K, and the optical band gap was 6.4 eV. A new fluoride K2TiF5 (KF/TiF3=2) with the space group Pbcn and the lattice parameters of a=7.4626(2), b=12.9544(4) and c=20.6906(7) Å was also obtained by the high pressure and high temperature treatment (5 GPa at 1000 °C) of a molar mixture of 2 KF+TiF3. The compound contains one-dimensional chains of corner-sharing TiF6 octahedra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号