首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   14篇
化学   204篇
力学   1篇
数学   7篇
物理学   73篇
  2023年   3篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   14篇
  2011年   23篇
  2010年   10篇
  2009年   4篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   2篇
  2004年   8篇
  2003年   2篇
  2002年   12篇
  2001年   6篇
  2000年   4篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   2篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1967年   2篇
  1963年   2篇
  1919年   1篇
  1880年   2篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
281.
Antibiotic resistance is a growing problem worldwide. For this reason, clinical laboratories often determine the susceptibility of the bacterial isolate to a number of different antibiotics in order to establish the most effective antibiotic for treatment. Unfortunately, current susceptibility assays are time consuming. Antibiotic resistance often involves the chemical modification of an antibiotic to an inactive form by an enzyme expressed by the bacterium. Selected reaction monitoring (SRM) has the ability to quickly monitor and identify these chemical changes in an unprecedented time scale. In this work, we used SRM as a technique to determine the susceptibility of several different antibiotics to the chemically modifying enzymes β‐lactamase and chloramphenicol acetyltransferase, enzymes used by bacteria to confer resistance to major classes of commonly used antibiotics. We also used this technique to directly monitor the effects of resistant bacteria grown in a broth containing a specific antibiotic. Because SRM is highly selective and can also identify chemical changes in a multitude of antibiotics in a single assay, SRM has the ability to detect organisms that are resistant to multiple antibiotics in a single assay. For these reasons, the use of SRM greatly reduces the time it takes to determine the susceptibility or resistance of an organism to a multitude of antibiotics by eliminating the time‐consuming process found in other currently used methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
282.
Mucins are the key component of the defensive mucus barrier. They are extended fibers of very high molecular weight with diverse biological functions depending strongly on their specific structural parameters. Here, we present a mucin-inspired nanostructure, produced via a synthetic methodology to prepare methacrylate-based dendronized polysulfates ( MIP-1 ) on a multi gram-scale with high molecular weight (MW=450 kDa) and thiol end-functionalized mucin-inspired polymer ( MIP ) via RAFT polymerization. Cryo-electron tomography (Cryo-ET) analysis of MIP-1 confirmed a mucin-mimetic wormlike single-chain fiber structure (length=144±59 nm) in aqueous solution. This biocompatible fiber showed promising activity against SARS-CoV-2 and its mutant strain, with a remarkable low half maximal (IC50) inhibitory concentration (IC50=10.0 nM). Additionally, we investigate the impact of fiber length on SARS-CoV-2 inhibition by testing other functional polymers ( MIPs ) of varying fiber lengths.  相似文献   
283.
284.
Treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidized 2,6-diethyl-1,3,5,7,8-pentamethylpyrromethene–BF2 complex 1 , 13,14-trimethyl-2, 3, 4, 5,9,10,11,12-octahydroindomethene–BF2 complex 5 , and 1,3,5,7,8-pentamethyl-1,2,3,5,6,7-hexahydropyromethene–BF2 complex 8 to the weakly fluorescent 3-formyl, 5-oxo, and 8-formyl derivatives 4 , 6 , and 9 , respectively. The dye 1 was oxidized by lead tetraacetate to 1,7,8-trimethyl-2,6-diethyl-3,5-diacetoxymethylpyrromethene–BF2 complex 12f (ethanol) 538 nm, Φ 0.62, λlas (ethanol) 555–570 nm]. Catalytic reduction (Pd/C) converted the aldehyde 4 to 2,6-diethyl-3-hydroxymethyl-1,5,7,8-tetramethylpyrromethene–BF2 complex 10f (ethanol) 537 nm, Φ 0.70, λlas (ethanol) 547–575 nm].  相似文献   
285.
Expansion microscopy (ExM) is a recently developed technique that allows for the resolution of structures below the diffraction limit by physically enlarging a hydrogel-embedded facsimile of the biological sample. The target structure is labeled and this label must be retained in a relative position true to the original, smaller state before expansion by linking it into the gel. However, gel formation and digestion lead to a significant loss in target-delivered label, resulting in weak signal. To overcome this problem, we have here developed an agent combining targeting, fluorescent labeling and gel linkage in a single small molecule. Similar approaches in the past have still suffered from significant loss of label. Here we show that this loss is due to insufficient surface grafting of fluorophores into the hydrogel and develop a solution by increasing the amount of target-bound monomers. Overall, we obtain a significant improvement in fluorescence signal retention and our new dye allows the resolution of nuclear pores as ring-like structures, similar to STED microscopy. We furthermore provide mechanistic insight into dye retention in ExM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号