Water-soluble macromolecular chain transfer agents (Macro-CTAs) were developed for the microwave-assisted precipitation polymerization of N-isopropylacrylamide. Two types of Macro-CTAs, amphiphilic (Macro-CTA1) and hydrophilic (Macro-CTA2), were investigated regarding their activity for the facile formation of nanoparticles and double hydrophilic block copolymers by RAFT processes. While both Macro-CTAs functioned as steric stabilization agents, the variation in their surface activity afforded different levels of control over the resulting nanoparticles in the presence of cross-linkers. The cross-linked nanoparticles produced using the amphiphilic Macro-CTA1 were less uniform than those produced using the fully hydrophilic Macro-CTA2. The nanoparticles spontaneously formed core-shell structures with surface functionalities derived from those of the Macro-CTAs. In the absence of cross-linkers, both types of Macro-CTAs showed excellent control over the RAFT precipitation polymerization process with well-defined, double hydrophilic block copolymers being obtained. The power of combining microwave irradiation with RAFT procedures was evident in the high efficiency and high solids content of the polymerization systems. In addition, the "living" nature of the nanoparticles allowed for further copolymerization leading to multiresponsive nanostructured hydrogels containing surface functional groups, which were used for surface bioconjugation. 相似文献
2-Acetyl-6-(dimethylamino)naphthalene-derived two-photon fluorescent Ca2+ probes (ACa1-ACa3) are reported. They can be excited by a 780 nm laser beam, show 23-50-fold enhancement in one- and two-photon excited fluorescence in response to Ca2+, emit fourfold stronger two-photon excited fluorescence than Oregon Green 488 BAPTA-1 upon complexation with Ca2+, and can selectively detect intracellular free Ca2+ ions in live cells and living tissues with minimum interference from other metal ions and membrane-bound probes. Moreover, these probes are capable of monitoring calcium waves at a depth of 120-170 microm in live tissues for 1100-4000 s using two-photon microscopy with no artifacts of photobleaching. 相似文献
Four fluorimetric probes had been developed to rapidly detect 2,4,6-trinitrophenol (TNP). They were designed and synthesized on the basis of 1,3,4-thiadiazole framework combining calculation with experiment. Among them, SK-1 displayed strong blue emission with fluorescence quantum yield as high as 63.6% in solution. Further evaluation demonstrated that SK-1 displays good selectivity and high sensitivity for rapid and visual detection of TNP. It brought significant changes in both colour and fluorescence emission spectrum. The detection limit was as low as 38 nM. Quenching mechanism was confirmed as photo-induced electron transfer (PET) by nuclear magnetic titration and DFT calculations. What’s more, application in real water samples and solid phase paper tests illustrated the practical significance of detection of TNP in both vapor and solution.