首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10079篇
  免费   2235篇
  国内免费   1475篇
化学   7596篇
晶体学   189篇
力学   596篇
综合类   126篇
数学   1141篇
物理学   4141篇
  2024年   34篇
  2023年   289篇
  2022年   401篇
  2021年   550篇
  2020年   604篇
  2019年   568篇
  2018年   481篇
  2017年   418篇
  2016年   564篇
  2015年   678篇
  2014年   740篇
  2013年   856篇
  2012年   1028篇
  2011年   993篇
  2010年   688篇
  2009年   715篇
  2008年   756篇
  2007年   603篇
  2006年   565篇
  2005年   428篇
  2004年   321篇
  2003年   234篇
  2002年   224篇
  2001年   166篇
  2000年   161篇
  1999年   122篇
  1998年   109篇
  1997年   74篇
  1996年   71篇
  1995年   52篇
  1994年   46篇
  1993年   46篇
  1992年   38篇
  1991年   18篇
  1990年   22篇
  1989年   20篇
  1988年   14篇
  1987年   18篇
  1986年   21篇
  1985年   16篇
  1984年   10篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1971年   2篇
  1966年   2篇
  1959年   2篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Heterojunctions of g‐C3N4/Al2O3 (g‐C3N4=graphitic carbon nitride) are constructed by an in situ one‐pot hydrothermal route based on the development of photoactive γ‐Al2O3 semiconductor with a mesoporous structure and a high surface area (188 m2g?1) acting as electron acceptor. A structure modification function of g‐C3N4 for Al2O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone‐pair electrons of the N atoms. The as‐synthesized heterojunctions exhibit much higher photocatalytic activity than pure g‐C3N4. The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g‐C3N4/Al2O3 under visible‐light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g‐C3N4. The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.  相似文献   
992.
The gelation behavior of lithocholate (LC?) with different metal ions in water was investigated. The microstructures of hydrogels were determined to be three‐dimensional (3D) networks of fibrous aggregates. The formation of fibrils was speculated to be mainly driven by the coordination between carboxylate of LC? and metal ions, accompanied by the assistance of noncovalent interactions such as electrostatic and hydrophobic interactions. The hydrogels, which can maintain the mechanical strength at higher temperature, exhibit thermal stability. Their gelation capability was enhanced with the increase in acidity. The hydrogels of LC? and Cu2+ mixtures served as the precursors for producing network nanostructures of CuS nanoparticles. These new CuS networks exhibit high fluorescence quenching ability and can act as an effective fluorescent sensing platform for ssDNA detection.  相似文献   
993.
The development of efficient catalysts for electrochemical hydrogen evolution is essential for energy conversion technologies. Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for hydrogen evolution reaction, and its performance greatly depends on its exposed edge sites and conductivity. Layered MoS2 nanosheets supported on a 3D graphene aerogel network (GA‐MoS2) exhibit significant catalytic activity in hydrogen evolution. The GA‐MoS2 composite displays a unique 3D architecture with large active surface areas, leading to high catalytic performance with low overpotential, high current density, and good stability.  相似文献   
994.
Catalytically active MnOx species have been reported to form in situ from various Mn‐complexes during electrocatalytic and solution‐based water oxidation when employing cerium(IV) ammonium ammonium nitrate (CAN) oxidant as a sacrificial reagent. The full structural characterization of these oxides may be complicated by the presence of support material and lack of a pure bulk phase. For the first time, we show that highly active MnOx catalysts form without supports in situ under photocatalytic conditions. Our most active 4MnOx catalyst (~0.84 mmol O2 mol Mn?1 s?1) forms from a Mn4O4 bearing a metal–organic framework. 4MnOx is characterized by pair distribution function analysis (PDF), Raman spectroscopy, and HR‐TEM as a disordered, layered Mn‐oxide with high surface area (216 m2g?1) and small regions of crystallinity and layer flexibility. In contrast, the SMnOx formed from Mn2+ salt gives an amorphous species of lower surface area (80 m2g?1) and lower activity (~0.15 mmol O2 mol Mn?1 s?1). We compare these catalysts to crystalline hexagonal birnessite, which activates under the same conditions. Full deconvolution of the XPS Mn2p3/2 core levels detects enriched Mn3+ and Mn2+ content on the surfaces, which indicates possible disproportionation/comproportionation surface equilibria.  相似文献   
995.
Four new donor–acceptor triads (D–A–D) based on discotic and arylene mesogens have been synthesized by using Sonogashira coupling and cyclization reactions. This family of triads consists of two side‐on pending triphenylene mesogens, acting as the electron‐donating groups (D), laterally connected through short lipophilic spacers to a central perylenediimide (PI), benzo[ghi]perylenediimide (BI), or coronenediimide (CI) molecular unit, respectively, playing the role of the electron acceptor (A). All D–A–D triads self‐organize to form a lamello‐columnar oblique mesophase, with a highly segregated donor–acceptor (D–A) heterojunction organization, consequent to efficient molecular self‐sorting. The structure consists in the regular alternation of two disrupted rows of triphenylene columns and a continuous row of diimine species. High‐resolution STM images demonstrate that PI‐TP2 forms stable 2D self‐assembly nanostructures with some various degrees of regularity, whereas the other triads do not self‐organize into ordered architectures. The electron‐transport mobility of CI‐TP2, measured by time‐of‐flight at 200 °C in the mesophase, is one order of magnitude higher than the hole mobility. By means of this specific molecular designing idea, we realized and demonstrated for the first time the so‐called p–n heterojunction at the molecular level in which the electron‐rich triphenylene columns act as the hole transient pathways, and the coronenediimide stacks form the electron‐transport channels.  相似文献   
996.
Total syntheses of (?)‐isoschizogamine and (?)‐2‐hydroxyisoschizogamine are described. The synthesis employs two asymmetric Michael additions to establish chiral centers at C7 and the quaternary carbon C20. Regioselective reduction of the methylthioiminium cation rather than the enamine generates an isoschizogamine‐type pentacyclic skeleton. Acidic hydrolysis of the isoschizogamine‐type intermediate in the absence of oxygen provides natural (?)‐isoschizogamine. Conducting the reaction in the presence of oxygen leads to a multistep oxidative hydrolysis cascade that affords unnatural (?)‐2‐hydroxyisoschizogamine.  相似文献   
997.
A practical palladium‐catalyzed carbonylative Suzuki coupling of aryl halides under carbon monoxide gas‐free conditions has been developed. Here, formic acid was utilized as the carbon monoxide source for the first time with acetic anhydride as the additive. A variety of diarylketones were produced in moderate to excellent yields from the corresponding aryl halides and arylboronic acids.  相似文献   
998.
999.
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco-p-xylylene) thin films prepared by chemical vapor deposition(CVD) and to optimize the reaction conditions of the polymer.Fourier transformed infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions.Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction(‘‘click' reaction).The alkyne functional groups on poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100 8C when annealed at 0.08 Torr in argon.We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene).The best reaction result was achieved,when copper concentration was 0.5 mmol/L,sodium ascorbate concentration to copper concentration was 5:1.In contrast,the azide concentration and temperature had no obvious effect on the surface reaction.  相似文献   
1000.
Several g-Al2O3 supported Pd–Ni bimetallic nanocatalysts(Pd–Ni(x:y)/Al2O3; where x and y represent the mass ratio of Pd and Ni, respectively) were prepared by the impregnation method and used for selective hydrogenation of cyclopentadiene to cyclopentene. The Pd–Ni/Al2O3 samples were confirmed to generate Pd–Ni bimetallic nanoparticles by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The catalytic activity was assessed in view of the effects of different mass ratios of Pd and Ni, temperature, pressure, etc. Among all the samples, the Pd–Ni(1:1)/Al2O3(PN-1:1) catalyst showed extremely high catalytic ability. The conversion of cyclopentadiene and selectivity for cyclopentene can be simultaneously more than 90%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号