首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3163篇
  免费   484篇
  国内免费   466篇
化学   2576篇
晶体学   34篇
力学   172篇
综合类   40篇
数学   322篇
物理学   969篇
  2024年   11篇
  2023年   61篇
  2022年   113篇
  2021年   120篇
  2020年   138篇
  2019年   130篇
  2018年   98篇
  2017年   106篇
  2016年   143篇
  2015年   137篇
  2014年   188篇
  2013年   237篇
  2012年   251篇
  2011年   298篇
  2010年   198篇
  2009年   170篇
  2008年   183篇
  2007年   176篇
  2006年   155篇
  2005年   146篇
  2004年   120篇
  2003年   103篇
  2002年   102篇
  2001年   88篇
  2000年   82篇
  1999年   93篇
  1998年   75篇
  1997年   60篇
  1996年   59篇
  1995年   41篇
  1994年   46篇
  1993年   31篇
  1992年   38篇
  1991年   15篇
  1990年   24篇
  1989年   14篇
  1988年   9篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1984年   14篇
  1983年   8篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有4113条查询结果,搜索用时 203 毫秒
71.
Altered collagen and elastin content correlates closely with remodeling of the arterial wall after injury. Optical analytical approaches have been shown to detect qualitative changes in plaque composition, but the capacity for detection of quantitative changes in arterial collagen and elastin content in vivo is not known. We have assessed fluorescence spectroscopy for detection of quantitative changes in arterial composition in situ, in rabbit models of angioplasty and stent implant. Fluorescence emission intensity (FEI) recorded at sites remote from the primary implant site was correlated with immunohistochemical (IH) analysis and extracted elastin and collagen. FEI was significantly decreased (P<0.05) after treatment with anti-inflammatory agents, and plaque area decreased on comparison with saline-treated rabbits after stent implant or angioplasty (Por=0.961) analysis were detected by multiple regression (MR) analysis. Good correlations also were found for FEI with elastin and collagen measured by high-performance liquid chromatography; MR analysis provided highly predictive values for collagen and elastin (R2>or=0.994). Fluorescence spectroscopic analysis detects quantitative compositional changes in arterial connective tissue in vivo, demonstrating changes at sites remote from primary angioplasty and stent implant sites.  相似文献   
72.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
73.
With recent advances in the computer-aided synthesis planning (CASP) powered by data science and machine learning, modern CASP programs can rapidly identify thousands of potential pathways for a given target molecule. However, the lack of a holistic pathway evaluation mechanism makes it challenging to systematically prioritize strategic pathways except for using some simple heuristics. Herein, we introduce a data-driven approach to evaluate the relative strategic levels of retrosynthesis pathways using a dynamic tree-structured long short-term memory (tree-LSTM) model. We first curated a retrosynthesis pathway database, containing 238k patent-extracted pathways along with ∼55 M artificial pathways generated from an open-source CASP program, ASKCOS. The tree-LSTM model was trained to differentiate patent-extracted and artificial pathways with the same target molecule in order to learn the strategic relationship among single-step reactions within the patent-extracted pathways. The model achieved a top-1 ranking accuracy of 79.1% to recognize patent-extracted pathways. In addition, the trained tree-LSTM model learned to encode pathway-level information into a representative latent vector, which can facilitate clustering similar pathways to help illustrate strategically diverse pathways generated from CASP programs.

Tree-structured long short-term memory neural model learns to understand the retrosynthesis design strategies from patent-extracted retrosynthetic pathway data.  相似文献   
74.
The biotransformation of bufalin by cell suspension cultures of Platycodon grandiflorus was investigated and two new biotransformed products were obtained,which was 3-epi-telocinobufagin and 3-epi-bufalin-3-O-β-D-glucoside.  相似文献   
75.
细胞动力学研究VIII.Na2SeO3对黑根菌作用特征   总被引:1,自引:0,他引:1  
The Characteristics of the action of Na2SeO3 on Rhizopus nigrocans has been studied by means of microcalorimetry, the relationship between growth rate constants and the concentration of Na2SeO3 is
k=0.03608exp[-0.003608(c+8.60)2]
It was found that Na2SeO3 of low concentration has promoting action on the growth of Rhizopus nigrocans cells, and high concentration of Na2SeO3 has inhibitory action. The study has provided a lot of information on the bioaffect of selenium and the research of toxicology.  相似文献   
76.
Some newly synthesized fluorinated nitroxides, such as t-butyl perfluoroalkyl nitroxides ButN(O) Rf (Rf=CF3, 5; C2F5, 6; n-C3F7, 7) and s-butyl perfluoroacyl nitroxides BusN(O) CORf (Rf=CF3, 9; n-C3F7, 10) have been employed as ESR probes of solvation in different common organic solvents. In aprotic solvents, the measured aN values for each of the nitroxyl probes show a linear correlation with the cybotactic polar solvent parameters ET (Dimroth) and Z (Kosowar), i.e. aN=bET+c, and aN=bZ+c′. The physical significance for the slope (b or b′), the slope×ET or slope×Z, the extrapolated intercept on aN axis, c or c′, are linked, respectively, to the sensitivity of a specific nitroxide toward solvation, the magnitude of the overall solvation effect on the aN value, and the intrinsic aN value of each nitroxide in the ideal gaseous state. The intercept on the aN axis may also serve as a new measure of electronegativity for perfluoroalkyl groups, CF3, C2F5, n-C3F7, and perfluoroacyl groups, CF3CO, n-C3F7CO. In protic solvents, i.e. alcohols and carboxylic acids, however, aN values of all the probes, kept almost no change with the increase in ET and Z. Furthermore, the plots of aN versus non-cybotactic solvent constants, such as dipolar moment (μ) and dielectric constant (ε), all show random variations.  相似文献   
77.
Mechanism transitions of Self-Pumped Phase Conjugation (SPPC) with wavelength and doping concentration are observed in KTN:Fe (KTa1 –x Nb x O3:Fe with x = 0.48) crystals. The SPPC mechanism in KTN: Fe (0.4 wt. %) crystal transforms from Stimulated Photorefractive Backscattering and Four-Wave Mixing (SPB-FWM) to cat (or total internal reflection) as the wavelength increases from 514.5 nm to 620 nm. SPPC at 514.5 nm is formed with the cat mechanism in a 0.2 wt. % doped KTN:Fe crystal, while with the SPB-FWM mechanism in a 0.4 wt. % doped one. These mechanism transitions are discussed with respect to the dependence of the backscattering gain coefficient of the crystals on wavelength and doping concentration.  相似文献   
78.
聚苯胺导电复合物二次掺杂的基材效应   总被引:1,自引:0,他引:1  
对十二烷基苯磺酸掺杂的聚苯胺与氯磺化聚乙烯或苯乙烯-丁二烯-苯乙烯三嵌段共聚物形成的复合物的二次掺杂进行了研究。二次掺杂的复合膜经反掺杂后的UV-Vis吸收光谱在580 ̄800nm处呈现宽的吸收,证实了二次掺杂后PAn主链的展开,同时表明PAn在CSPE中的展开较在SBS中更充分,ESR动态测试表明二次掺杂诱导主链的载流子间相互作用有2种方式;PAn/CSPE中的单极化子转变为双极化子;PAn/S  相似文献   
79.
The cobalt, nickel, copper, zinc and cadmium complexes of S-methyl-N-(ferrocenyl-l-methyl-methylidene)-dithiocarbazate (H-LSM) and S-benzyl-N-(ferrocenyl-l-methyl-methylidene)-dithiocarbazate (H-LSB) were synthesized and the crystal structure of Cd[Fe-C(CH3) = NNCSS. (CH3)]2 was solved by X-ray diffraction. The crystal is in the orthorhombic system with space group Pbca, cell parameters a=19.741(3), b=19.924(5), c=15.452(4) A, and the final factors of R=0.032. The study on quenching the luminescence of Ru(bpy)3 by those complexes showed that bimolecular quenching constants obtained from the Stern-Vohner constant and the excited-state lifetime were related to the redox potential of the quencher. Linear relationship is shown in the plot of logkq vs. E1/2(Q+/Q). The main factor which influences the quenching rate constant and the redox potential is the coordinating ability of the metal in the complex.  相似文献   
80.
为使由Alhassid与Levine所提出的动力学李代数方法(简称A-L理论)能适用于更多的散射体系,在h(∞)中引入了有效集合C(有限维)的概念.按照微扰理论的意义,C中的代数元所对应的群参量是较低次微扰的结果,而不属于C的代数元所对应的群参量则相当于较高次做扰所产生的修正结果.因此可以近似地利用C来代替h(∞).这样,不仅简化了计算程序并且对于很多具有现实意义的散射过程的计算成为可能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号