首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
化学   35篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   44篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
65.
66.
67.
An amperometric biosensor for the sensitive detection of superoxide was designed utilizing a drop‐coating approach for immobilizing the superoxide dismutase enzyme on Pt electrode modified with a thin layer of poly (3,4‐ethylenedioxythiophene) (PEDOT). The layer electrodeposited on Pt was characterized by cyclic voltammetry and atomic force microscopy (AFM). Then, drop‐coating procedure was chosen for the immobilization of superoxide dismutase (SOD), which was incorporated at the electrode surface using a solution containing SOD, glutaraldehyde and bovine serum albumin (optimized composition: SOD 0.1 % – BSA 2 % – GA 2.5 %.) This simple procedure allows forming a reproducible enzymatic biocomposite layer that allows optimal sensitivity and limit of detection for superoxide sensing. The synergistic effect integrates an effective conductivity and permselectivity attributed to the PEDOT layer, as well as the specificity and selectivity of SOD for the detection of superoxide. A high sensitivity (0.82±0.01 μA/μM) and a low detection limit of 11 nM were obtained, as well as good selectivity against main interfering biological compounds such as uric acid and ascorbic acid. Our results suggest that the biosensor could be used for the detection and quantification of in vitro and in vivo.  相似文献   
68.
A dramatic difference in the ability of the reducing AnIII center in AnCp3 (An=U, Np, Pu; Cp=C5H5) to oxo‐bind and reduce the uranyl(VI) dication in the complex [(UO2)(THF)(H2L)] (L=“Pacman” Schiff‐base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At‐first contradictory electronic structural data are explained by combining theory and experiment. Complete one‐electron transfer from Cp3U forms the UIV‐uranyl(V) compound that behaves as a UV‐localized single molecule magnet below 4 K. The extent of reduction by the Cp3Np group upon oxo‐coordination is much less, with a NpIII‐uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest NpIVUV but single‐crystal X‐ray diffraction and SQUID magnetometry suggest a NpIII‐UVI assignment. DFT‐calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The PuIII–UVI interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.  相似文献   
69.
A non‐invasive device based on measurements of electrochemical skin conductance can detect small fiber neuropathy, a sweat gland dysfunction implicated in several diseases. The measurement is related to sweat composition and notably to chloride concentration. To optimize the electrode material, in vitro experiments are performed in mimetic sweat solutions. This work reports on the resistance to pitting corrosion of biocompatible stainless steels (AISI 304L, AISI 430, AISI 430T, D2205) in sweat mimicking electrolyte at pH 7 with variable chloride concentration, to determine the most sensitive material to sweat composition. AISI 430 is promising due to its high sensitivity to chloride concentration variations.  相似文献   
70.
S‐nitrosothiols (RSNOs) are composed of nitric oxide (NO) bound to the sulfhydryl group of amino acids of peptides or proteins. There is a great interest for their quantitation in biological fluids as they have a crucial impact on physiological and pathophysiological events. Most analytical methodologies for quantitation of RSNOs are based on their decomposition followed by the detection of the released NO. In order to obtain the optimal sensitivity for each detection method, the total decomposition of RSNOs is highly desired. The decomposition of RSNOs can be obtained by using catalytically active metal ions, such as Cu+, obtained from CuSO4 in presence of a reducing agent such as glutathione (GSH) that is naturally present in biological environment. In this work, we have re‐investigated the decomposition of S‐nitrosoglutathione (GSNO) which is the most abundant in vivo low molecular weight RSNO, with a special emphasis on the effect of CuSO4, GSH, and GSNO concentrations and of their ratio. To this aim, GSNO decomposition optimization was performed by both indirect (Griess assay) and direct (real time electrochemical detection of NO at NO‐microsensor) quantitation methods. Our results show that the ratio between CuSO4, GSH and GSNO should be adjusted to tune the highest decomposition rate of GSNO and the most efficient electrochemical detection of released NO; also it shows the deleterious effect of very high GSH concentration on the detection of GSNO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号