首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   21篇
  国内免费   21篇
化学   509篇
晶体学   9篇
力学   14篇
数学   177篇
物理学   146篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   8篇
  2016年   25篇
  2015年   21篇
  2014年   25篇
  2013年   53篇
  2012年   50篇
  2011年   49篇
  2010年   29篇
  2009年   34篇
  2008年   55篇
  2007年   61篇
  2006年   63篇
  2005年   50篇
  2004年   50篇
  2003年   31篇
  2002年   37篇
  2001年   11篇
  2000年   3篇
  1999年   13篇
  1998年   4篇
  1997年   12篇
  1996年   14篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1967年   2篇
  1936年   4篇
排序方式: 共有855条查询结果,搜索用时 15 毫秒
831.
Synergistic effects arising from the conjugation of organic dyes onto non‐luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well‐known pH‐insensitive dye, tetramethyl‐rhodamine (TAMRA), to pH‐insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH‐insensitive dyes, this pH‐dependent dimerization can also enhance the pH sensitivity of fluorescein, a well‐known pH‐sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges.  相似文献   
832.
833.
We present data on the coverage and nearest-neighbor dependences of the diffusion of CO on Cu(111) by time-lapsed scanning tunneling microscope (STM) imaging. Most notable is a maximum in diffusivity of CO at a local coverage of one molecule per 20 substrate atoms and a repulsion between CO molecules upon approach closer than three adsites, which in combination with a less pronounced increase in potential energy at the diffusion transition state, leads to rapid diffusion of CO molecules around one another. We propose a new method of evaluating STM-based diffusion data that provides all parameters necessary for the modeling of the dynamics of an adsorbate population.  相似文献   
834.
The use of hemoglobin (Hb) contained within red blood cells to drive a controlled radical polymerization via a reversible addition‐fragmentation chain transfer (RAFT) process is reported for the first time. No pre‐treatment of the Hb or cells was required prior to their use as polymerization catalysts, indicating the potential for synthetic engineering in complex biological microenvironments without the need for ex vivo techniques. Owing to the naturally occurring prevalence of the reagents employed in the catalytic system (Hb and hydrogen peroxide), this approach may facilitate the development of new strategies for in vivo cell engineering with synthetic macromolecules.  相似文献   
835.
A range of organic solvents (ethanol, isopropanol and acetone) has been investigated as alternatives to acetonitrile and methanol when used in conjunction with Corona Charged Aerosol Detection (Corona CAD). These solvents have been evaluated with regard to their effect on the response of the Corona CAD. Three dimensional response surfaces were constructed using raw data showing the relationship between detector response, analyte concentration and percentage of organic solvent in the mobile phase, using sucralose or quinine as the test analyte. The detector response was non-linear in terms of analyte concentration for all solvents tested. However, detector response varied in an approximately linear manner with percentage of organic solvent over the range 0–40% for ethanol or isopropanol and 0–80% for acetone and methanol. The chromatographic performance of the various solvents when used as aqueous–organic mobile phases was evaluated for isocratic and gradient separations of sugars and sugar alcohols by hydrophilic interaction liquid chromatography (HILIC) using an Asahipak NH2P-504E column coupled with Corona CAD detection. It was found that whilst acetonitrile provided the highest column efficiencies and lowest detection limits of the solvents studied, acetone also performed well and could be used to resolve the same number of analytes as was possible with acetonitrile. Typical efficiencies and detection limits of 5330 plates m−1 and 1.25 μg mL−1, respectively, were achieved when acetone was used as the organic modifier. Acetone was utilised successfully as an organic modifier in the HILIC separation of carbohydrates in a beer sample and also for a partially digested dextran sample.  相似文献   
836.
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange-correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and (13)C NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and (13)C NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid-state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.  相似文献   
837.
(Bis‐selenolato) and (bis‐tellurolato)diiron complexes [2Fe2E(Si)] were prepared and compared with the known (bis‐thiolato)diiron complex A to assess their ability to produce hydrogen from protons. Treatment of [Fe3(CO)12] with 4,4‐dimethyl‐1,2,4‐diselenasilolane ( 1 ) in boiling toluene afforded hexacarbonyl{μ‐{[1,1′‐(dimethylsilylene)bis[methaneselenolato‐κSe : κSe]](2 ?)}}diiron(Fe? Fe) ( 2 ). The analog bis‐tellurolato complex hexacarbonyl{μ‐{[1,1′‐(dimethylsilylene)bis[methanetellurolato‐κTe : κTe]](2 ?)}}diiron(Fe? Fe) ( 3 ) was obtained by treatment of [Fe3(CO)12] with dimethylbis(tellurocyanatomethyl)dimethylsilane, which was prepared in situ. All compounds were characterized by NMR, IR spectroscopy, mass spectrometry, elemental analysis and single‐crystal X‐ray analysis. The electrocatalytic properties of the [2Fe2X(Si)] (X=S, Se, Te) model complexes A, 1 , and 2 towards hydrogen formation were evaluated.  相似文献   
838.
Exfoliated poly(dicyclopentadiene) (pDCPD)—montmorillonite (MMT) nanocomposites were synthesized via intergallery‐surface‐initiated ring opening metathesis polymerization (ROMP). This is the first example of in situ polymerization of pDCPD from clay intergallery surfaces using ROMP. Grubbs catalyst was immobilized on the surface of MMT clay modified with vinylbenzyl dimethyloctadecyl ammonium chloride (VOAC), and DCPD polymerized from the clay surface while simultaneously crosslinking to form a thermoset nanocomposite in a one‐pot reaction. X‐ray diffraction and transmission electron microscopy analysis indicated that the resultant nanocomposites exhibited exfoliated morphologies with heterogeneous clay platelet distribution. Conventional bulk‐initiated nanocomposites containing VOAC modified MMT were also synthesized as a comparison, and these resulted in nanocomposites with intercalated morphologies. The differences between the morphologies demonstrated that growing polymer chains from the initiator sites on the intergallery surface of the clay platelets pushed the platelets apart during the polymerization of the intergallery‐surface‐initiated nanocomposites, aiding in the exfoliation process. Compression testing indicated that the intergallery‐surface‐initiated nanocomposites led to improvements of up to 50% in the compressive Young's Modulus, while the bulk‐initiated nanocomposites at the same clay loadings did not exhibit improved properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
839.
Geldanamycin, a polyketide natural product, is of significant interest for development of new anticancer drugs that target the protein chaperone Hsp90. While the chemically reactive groups of geldanamycin have been exploited to make a number of synthetic analogs, including 17-allylamino-17-demethoxy geldanamycin (17-AAG), currently in clinical evaluation, the "inert" groups of the molecule remain unexplored for structure-activity relationships. We have used genetic engineering of the geldanamycin polyketide synthase (GdmPKS) gene cluster in Streptomyces hygroscopicus to modify geldanamycin at such positions. Substitutions of acyltransferase domains were made in six of the seven GdmPKS modules. Four of these led to production of 2-desmethyl, 6-desmethoxy, 8-desmethyl, and 14-desmethyl derivatives, including one analog with a four-fold enhanced affinity for Hsp90. The genetic tools developed for geldanamycin gene manipulation will be useful for engineering additional analogs that aid the development of this chemotherapeutic agent.  相似文献   
840.
This paper reports on the electrochemical behavior of an ATP biosensor that utilizes glucose oxidase (GOx) and hexokinase (Hex) immobilized within the electroactive polymer, polyethylenedioxythiophene (PEDOT). This biosensor design detects ATP indirectly at 0.85 V vs. Ag/AgCl based on the oxidation current for enzymatically generated H2O2, and at −0.20 V; a potential at which improved analyte selectivity is achieved. The detection figures of merit at both detection potentials are a response time of 15±1 s, an experimental detection limit of 10.0±0.2 μmol L−1 (S/N=3), and a sensitivity in the range of 100–500 mA M−1cm−2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号