首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   4篇
  国内免费   2篇
化学   114篇
晶体学   2篇
力学   1篇
数学   37篇
物理学   64篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2017年   2篇
  2016年   10篇
  2013年   8篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   10篇
  2006年   3篇
  2005年   5篇
  2004年   8篇
  2003年   6篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   9篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   3篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1912年   1篇
排序方式: 共有218条查询结果,搜索用时 62 毫秒
111.
Bottom-up nanoparticle (NP) formation is assumed to begin with the reduction of the precursor metallic ions to form zero-valent atoms. Studies in which this assumption was made are reviewed. The standard reduction potential for the formation of aqueous metallic atoms—E0(Mn+aq/M0aq)—is significantly lower than the usual standard reduction potential for reducing metallic ions Mn+ in aqueous solution to a metal in solid state. E0(Mn+aq/M0solid). E0(Mn+aq/M0aq) values are negative for many typical metals, including Ag and Au, for which E0(Mn+aq/M0solid) is positive. Therefore, many common moderate reduction agents that do not have significantly high negative reduction standard potentials (e.g., hydrogen, carbon monoxide, citrate, hydroxylamine, formaldehyde, ascorbate, squartic acid, and BH4), and cannot reduce the metallic cations to zero-valent atoms, indicating that the mechanism of NP production should be reconsidered. Both AgNP and AuNP formations were found to be multi-step processes that begin with the formation of clusters constructed from a skeleton of M+-M+ (M = Ag or Au) bonds that is followed by the reduction of a cation M+ in the cluster to M0, to form Mn0 via the formation of NPs. The plausibility of M+-M+ formation is reviewed. Studies that suggest a revised mechanism for the formation of AgNPs and AuNPs are also reviewed.  相似文献   
112.
113.
The morphological stability of polystyrene high-density polyethylene (PS/PE) blend is investigated in the region of dual-phase continuity. The effect of the addition of a triblock SEBS copolymer to the blends on the stability of these morphologies, is examined. The results show that the morphology of the unmodified blends changes from co-continuous to droplet matrix for PS-rich blends whereas the morphology of a 50/50 blend maintains continuity but coarsened significantly upon annealing at 200°C. In the presence of the copolymer, these morphologies are much more stable. Selective solvent extraction of polystyrene in di-ethyl ether reveals that the level of PS continuity in the 50/50 blend is higher for the unmodified system than for the modified one. Upon annealing, the level of PS continuity significantly increases for the unmodified 50/50 PS/PE blend. The effect of the copolymer content in the blend on the interfacial tension between the two components is also investigated using the breaking thread method. The interfacial tension is found to be reduced from 5.6 to 1.1 mN/m by the addition of 20 parts of the copolymer to the blend. © 1997 John Wiley & Sons, Inc.  相似文献   
114.
The breaking thread and the sessile drop methods have been used to evaluate the interfacial tension between a polypropylene (PP) and a polyethylene-terephthalate (PET). An excellent correlation was found between the two. The breaking thread technique was then used to evaluate the interfacial tension of these blends at various levels of a styrene-ethylene butylene-styrene grafted with maleic anhydride (SEBS-g-MA) compatibilizer. In order to evaluate the relative roles of coalescence and interfacial tension in controlling dispersed phase size reduction during compatibilization, the morphology of PP/PET 1/99 and 10/90 blends compatibilized by a SEBS-g-MA were studied and compared. The samples were prepared in a Brabender mixer. For the 10/90 blend, the addition of the compatibilizer leads to a typical emulsification curve, and a decrease in dispersed phase size of 3.4 times is observed. For the 1/99 blend, a 1.7 times reduction in particle size is observed. In the latter case, this decrease can only be attributed to the decrease of the interfacial tension. It is evident from these results that the drop in particle size for the 10/90 PP/PET blend after compatibilization is almost equally due to diminished coalescence and interfacial tension reduction. These results were corroborated with the interfacial tension data in the presence of the copolymer. A direct relationship between the drop in dispersed phase size for the 1/99 PP/PET blend and the interfacial tension reduction was found for this predominantly shear mixing device. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2271–2280, 1997  相似文献   
115.
We propose a novel, accelerated algorithm for the approximate stochastic simulation of biochemical systems with delays. The present work extends existing accelerated algorithms by distributing, in a time adaptive fashion, the delayed reactions so as to minimize the computational effort while preserving their accuracy. The accuracy of the present algorithm is assessed by comparing its results to those of the corresponding delay differential equations for a representative biochemical system. In addition, the fluctuations produced from the present algorithm are comparable to those from an exact stochastic simulation with delays. The algorithm is used to simulate biochemical systems that model oscillatory gene expression. The results indicate that the present algorithm is competitive with existing works for several benchmark problems while it is orders of magnitude faster for certain systems of biochemical reactions.  相似文献   
116.
We present a simple algorithm for the simulation of stiff, discrete-space, continuous-time Markov processes. The algorithm is based on the concept of flow averaging for the integration of stiff ordinary and stochastic differential equations and ultimately leads to a straightforward variation of the the well-known stochastic simulation algorithm (SSA). The speedup that can be achieved by the present algorithm [flow averaging integrator SSA (FLAVOR-SSA)] over the classical SSA comes naturally at the expense of its accuracy. The error of the proposed method exhibits a cutoff phenomenon as a function of its speed-up, allowing for optimal tuning. Two numerical examples from chemical kinetics are provided to illustrate the efficiency of the method.  相似文献   
117.
We present a study of discrete Painlevé equations which do not have any parameter, apart from those that can be removed by the appropriate scaling. We find four basic equations of this type as well as several more related to the basic ones by Miura transformations, which we derive explicitly. We obtain also the continuous limits of the basic parameterless equations and show that two of them are the discrete analogues of both the continuous Painlevé I and the zero-parameter Painlevé III.  相似文献   
118.
In this study, a dynamic vulcanized alloy of brominated poly(isobutylene‐co‐p‐methylstyrene) (BIMSM) and polyamide (PA) has been investigated. An interfacial reaction between BIMSM and PA and a crosslinking reaction between BIMSM molecules is carried out simultaneously during melt blending. To form a vulcanized, nanoscale elastomer dispersion, the timing of these reactions is key and the interfacial reaction should be well advanced before the vulcanization reaction initiates. At a blending temperature of 205 °C, independent of the processing conditions, it is found that the interfacial reaction dominates the phase morphology development. Increasing the melt processing temperature, however, begins to favor the vulcanization reaction over the interfacial reaction. In nonplasticized blends, it is found that increasing the temperature above 235 °C increases the speed of the vulcanization reaction to a level that it dominates the phase morphology development. As a result, the phase size increases by 2.5‐fold because the system is vulcanized before the interfacial modification step is complete. Adding plasticizer to the PA matrix increases the overall phase size, but shows a similar behavior with increase in temperature from 205 to 255 °C. The critical temperature where the vulcanization reaction starts dominating phase morphology in the plasticized systems is at 225 °C. Once the processing temperature is above the critical temperature, it is found that the mixing sequence can be used to time and decouple the reactions. The work demonstrates that a close control over the temperature and processing conditions can be used to decouple the interfacial and vulcanization reactions resulting in vulcanized, nanoscale dispersions for the BIMSM and PA system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号