首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   26篇
  国内免费   3篇
化学   503篇
晶体学   4篇
力学   27篇
数学   67篇
物理学   93篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   10篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   17篇
  2013年   38篇
  2012年   47篇
  2011年   67篇
  2010年   31篇
  2009年   36篇
  2008年   56篇
  2007年   50篇
  2006年   49篇
  2005年   27篇
  2004年   25篇
  2003年   26篇
  2002年   31篇
  2001年   15篇
  2000年   10篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1985年   10篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1964年   1篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
61.
Combustion of methane-rich fuels frequently provides forced convective heating in industry, and the ability to predict the rate of heat transfer from such flames to solid surfaces is often desirable. Mathematical modelling of stagnation point heat flux has been achieved by numerical solution of the boundary layer equations, and by an analytical equation modified to include the effects of chemical reaction in the free stream flow and to allow for the enhancement in heat flux caused by the diffusion and exothermic recombination of reactive species in the boundary layer surrounding the heat receiving body. Predictions from these models have been compared with experimental data obtained in high temperature methane flames of various equivalence ratios. Within the equilibrium region of these flames, predictions from the modified analytical equation based on total Lewis numbers equal to and greater than one form a tight envelope around the experimental results, and hence provide a relatively simple method of predicting heat flux. Numerical solutions tend to slightly underestimate predictions from the analytical equation and experimental data, although agreement with the alternative prediction method increases with the surface temperature of the heat receiving body  相似文献   
62.
The chemistry of post transition metals is dominated by the group oxidation state N and a lower N-2 oxidation state, which is associated with occupation of a metal s(2) lone pair, as found in compounds of Tl(I), Pb(II) and Bi(III). The preference of these cations for non-centrosymmetric coordination environments has previously been rationalised in terms of direct hybridisation of metal s and p valence orbitals, thus lowering the internal electronic energy of the N-2 ion. This explanation in terms of an on-site second-order Jahn-Teller effect remains the contemporary textbook explanation. In this tutorial review, we review recent progress in this area, based on quantum chemical calculations and X-ray spectroscopic measurements. This recent work has led to a revised model, which highlights the important role of covalent interaction with oxygen in mediating lone pair formation for metal oxides. The role of the anion p atomic orbital in chemical bonding is key to explaining why chalcogenides display a weaker preference for structural distortions in comparison to oxides and halides. The underlying chemical interactions are responsible for the unique physicochemical properties of oxides containing lone pairs and, in particular, to their application as photocatalysts (BiVO(4)), ferroelectrics (PbTiO(3)), multi-ferroics (BiFeO(3)) and p-type semiconductors (SnO). The exploration of lone pair systems remains a viable a venue for the design of functional multi-component oxide compounds.  相似文献   
63.
Self-assembly of a binary monolayer of charged particles is modeled using molecular dynamics and statistical mechanics. The equilibrium phase diagram for the system has three distinct phases: an ionic crystal; a geometrically ordered crystal with disordered charges; and a fluid. We show that self-assembly occurs near the phase transition between the ionic crystal and the fluid, and that the rate of ordering is sensitive to the applied pressure. By assuming an Arrhenius form for the rate of ordering, an optimality condition for the temperature and pressure is derived that maximizes the rate. Using the Clausius-Clapeyron equation, the optimal point on the phase boundary is expressed in terms of the thermodynamic changes in state variables across the boundary. The predicted optimal temperature and pressure conditions are in good agreement with numerical simulations and result in self-organization rates five times that of a simulation without applied pressure.  相似文献   
64.
Acyclic bissulfonylnitroxides have never been isolated, and degrade through fragmentation. In an approach to stabilising a bissulfonylnitroxide radical, the cyclic, peri-substituted N,N-bissulfonylhydroxylamine, 2-hydroxynaphtho[1,8-de][1,3,2]dithiazine 1,1,3,3-tetraoxide (1), has been prepared by formal nitrogen insertion into the sulfur-sulfur bond of a sulfinylsulfone, naphtho[1,8-cd][1,2]dithiole 1,1,2-trioxide. The heterocyclic ring of 1 is shown to adopt a sofa conformation by X-ray crystallography, with a pseudo-axial hydroxyl group. N,N-Bissulfonylhydroxylamine 1 displays high thermal, photochemical and hydrolytic stability compared to acyclic systems. EPR analysis reveals formation of the corresponding bissulfonylnitroxide 2 upon oxidation of 1 with the Ce(IV) salts CAN and CTAN. Although 2 does not undergo fragmentation, it cannot be isolated, since hydrogen atom abstraction to reform 1 occurs in situ. The stability and reactivity of 1 and 2 are compared with the known cyclic benzo-fused N,N-bissulfonylhydroxylamine, N-hydroxy-O-benzenedisulfonimide (6), for which the X-ray data, and EPR of the corresponding nitroxide 10, are also reported for the first time.  相似文献   
65.
Total synthesis of the proposed structure of (-)-hyacinthacine C(5) and its epimers at C6 and C7 is described. A key step of the synthesis was the construction of the bicyclic pyrrolizidine system by means of a nucleophilic addition of a dithiane to a cyclic nitrone followed by a Cope-House cyclization.  相似文献   
66.
CdO has been studied for decades as a prototypical wide band gap transparent conducting oxide with excellent n-type ability. Despite this, uncertainty remains over the source of conductivity in CdO and over the lack of p-type CdO, despite its valence band maximum (VBM) being high with respect to other wide band gap oxides. In this article, we use screened hybrid DFT to study intrinsic defects and hydrogen impurities in CdO and identify for the first time the source of charge carriers in this system. We explain why the oxygen vacancy in CdO acts as a shallow donor and does not display negative-U behavior similar to all other wide band gap n-type oxides. We also demonstrate that p-type CdO is not achievable, as n-type defects dominate under all growth conditions. Lastly, we estimate theoretical doping limits and explain why CdO can be made transparent by a large Moss-Burstein shift caused by suitable n-type doping.  相似文献   
67.
68.
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe(2)O(3), hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe(2)O(3) crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.  相似文献   
69.
The temperature dependence of the reversible reaction between CO(2)(aq) and monoethanolamine (MEA) has been investigated using stopped-flow spectrophotometry by following the pH changes during the reactions with colored acid-base indicators. Multivariate global analysis of both the forward and backward kinetic measurements for the reaction of CO(2)(aq) with MEA yielded the rate and equilibrium constants, including the protonation constant of MEA carbamate, for the temperature range of 15-45 °C. Analysis of the rate and equilibrium constants in terms of the Arrhenius, Eyring, and van't Hoff relationships gave the relevant thermodynamic parameters. In addition, the rate and equilibrium constants for the slow, reversible reaction of bicarbonate with MEA are reported at 25.0 °C. At high pH, reactions of the amine with CO(2) and with bicarbonate are significant.  相似文献   
70.
We have applied crystal structure prediction methods to understand and predict the formation of a DMSO solvate of the anti-convulsant drug carbamazepine (CBZ), in which the DMSO molecules are disordered. Crystal structure prediction calculations on the 1:1 CBZ:DMSO solvate revealed the generation of two similar low energy structures which differ only in the orientation of the DMSO molecules. Analysis of crystal energy landscapes generated at 0 K suggests the possibility of solvent disorder. A combined computational and experimental study of the changes in the orientation of the DMSO within the crystal structure revealed that the nature of the disorder changes with temperature. At low temperature, the DMSO disorder is static whilst at high temperature the DMSO configurations can interconvert by a 180° rotation of the DMSO molecules within the lattice. This 180° rotation of the DMSO molecules drives a phase change from a high temperature dynamically disordered phase to a low temperature phase with static disorder. Crystallisation of a DMSO solvate of the related molecule epoxycarbamazepine resulted in a different degree of DMSO disorder in the crystal structure, despite the similarity of the carbamazepine and epoxycarbamazepine molecules. We believe consideration of disorder and its contribution to entropy and crystal free energies at temperature other than 0 K is fundamental for the accuracy of future energy rankings in crystal structure prediction calculations of similar solvated structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号