首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
  国内免费   1篇
化学   123篇
力学   2篇
数学   3篇
物理学   40篇
  2022年   2篇
  2021年   5篇
  2020年   8篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   15篇
  2011年   10篇
  2010年   11篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   12篇
  2004年   4篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1957年   1篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
91.
A comparison of the reductive adsorption behavior of 4‐sulfophenyl diazonium salt and subsequent electrochemical reactivity on gold relative to carbon was studied with some significant differences observed. The ability of the 4‐sulfophenyl layer adsorbed onto gold to block access of the redox probe ferricyanide to the underlying electrodes, as determined via cyclic voltammetry was inferior to the same layers formed on glassy carbon electrodes thus indicating a more open, porous layer formed on gold. More significantly, the 4‐sulfophenyl layers are shown to be far less electrochemically stable on gold than on glassy carbon. Electrochemical and X‐ray photoelectron spectroscopy (XPS) evidence suggests the instability is due to cleavage of the bond between sulfonate functional group and phenyl ring. These results provide further evidence that although aryl diazonium salt layers are relatively stable on gold surfaces compared with alkanethiol based self‐assembled monolayer (SAMs), the stability is not as high as is observed on carbon.  相似文献   
92.
From diagnosis of life‐threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.  相似文献   
93.
Enzyme-linked immunosorbent assays (ELISAs) are investigated in this work for the detection of bisphenol-A (BPA), a plastic monomer and a critical contaminant in food and environment. A series of polyclonal antibodies generated in vivo using BPA-butyrate-protein conjugate and BPA-valerate-protein conjugate were evaluated on direct and indirect competitive assay formats with five competing haptens (BPA-butyrate, BPA-valerate, BPA-crotonate, BPA-acetate, and BPA-2-valerate). Two indirect ELISAs and one direct ELISA exhibiting high sensitivity and specificity for BPA were developed. The 50 % inhibition of antibody binding (IC(50)) values were 0.78 ± 0.01-1.20 ± 0.26 μg L(-1), and the limits of detection as measured by the IC(20) values were 0.10 ± 0.03-0.20 ± 0.04 μg L(-1). The assays were highly specific to BPA, only displaying low cross-reactivity (3-8 % for the indirect assays and 26 % for the direct assay) for 4-cumylphenol (4-CP), at pH 7.2. The degree of cross-reaction of 4-CP was influenced by the antibody/hapten conjugate combination, assay conditions, and the assay format. The assays were optimized for the analysis of BPA in canned vegetables, bottled water and carbonated drinks. The limits of quantification for these three evaluated sample types, based on the spike and recovery data, were 0.5, 2.5, and 100 μg L(-1), respectively.  相似文献   
94.
We observed multiple pathways of stretching single-stranded polydeoxynucleotides, poly(dA). Poly(dA) has been shown to undergo unique transitions under mechanical force, and such transitions were attributed to the stacking characteristics of poly(dA). Using single-molecule manipulation studies, we found that poly(dA) has two stretching pathways at high forces. The previously observed pathway has a free energy that is less than what is expected of single-stranded DNA with a random sequence, indicating the existence of a novel conformation of poly(dA) at large extensions. We also observed stepwise transitions between the two pathways by pulling the molecule with constant force, and found that the transitions are cooperative. These results suggest that the unique mechanical property of poly(dA) may play an important role in biological processes such as gene expression.  相似文献   
95.
It is shown how one can transform scalar first-order ordinarydifferential equations which admit non-local symmetries of theexponential type to integrable equations admitting canonicalexponential non-local symmetries. As examples we invoke theAbel equation of the second kind, the Riccati equation and naturalgeneralizations of these. Moreover, our method describes howa double reduction of order for a second-order ordinary differentialequation which admits a two-dimensional Lie algebra of generatorsof point symmetries can be affected if the second-order equationis first reduced in order once by a symmetry which does notspan an ideal of the two-dimensional Lie algebra.  相似文献   
96.
97.
This communication discusses the electrochemical assessment of self-assembled monolayers (SAMs) formed via microcontact printing with various concentrations of 1-hexadecanethiol (HDT) ink. At concentrations above 20 mM, the printed SAMs are shown to have very similar qualities to those formed from solution using much longer preparation procedures.  相似文献   
98.
99.
We have examined the nanoscale adsorption of molecular water under ambient conditions onto a series of well-characterized functionalized surfaces produced by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC or "click") reactions on alkyne-terminated self-assembled monolayers on silicon. Water contact angle (CA) measurements reveal a range of macroscopic hydrophilicity that does not correlate with the tendency of these surfaces to adsorb water at the molecular level. X-ray reflectometry has been used to follow the kinetics of water adsorption on these "click"-functionalized surfaces, and also shows that dense continuous molecular water layers are formed over 30 h. For example, a highly hydrophilic surface, functionalized by an oligo(ethylene glycol) moiety (with a CA = 34°) showed 2.9 ? of adsorbed water after 30 h, while the almost hydrophobic underlying alkyne-terminated monolayer (CA = 84°) showed 5.6 ? of adsorbed water over the same period. While this study highlights the capacity of X-ray reflectometry to study the structure of adsorbed water on these surfaces, it should also serve as a warning for those intending to characterize self-assembled monolayers and functionalized surfaces to avoid contamination by even trace amounts of water vapor. Moreover, contact angle measurements alone cannot be relied upon to predict the likely degree of moisture uptake on such surfaces.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号