全文获取类型
收费全文 | 174篇 |
免费 | 3篇 |
专业分类
化学 | 99篇 |
晶体学 | 1篇 |
数学 | 18篇 |
物理学 | 59篇 |
出版年
2020年 | 2篇 |
2018年 | 3篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 2篇 |
2013年 | 8篇 |
2012年 | 11篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2009年 | 4篇 |
2008年 | 1篇 |
2007年 | 4篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 8篇 |
2000年 | 10篇 |
1999年 | 4篇 |
1997年 | 1篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 4篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1975年 | 10篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 3篇 |
1970年 | 1篇 |
1924年 | 1篇 |
1922年 | 1篇 |
排序方式: 共有177条查询结果,搜索用时 15 毫秒
101.
B.Y. Oh W. Morris D.L. Parker G.A. Smith J. Whitmore R.J. Miller J.J. Phelan P.F. Schultz L. Voyvodic R. Walker R. Yaari E.W. Anderson H.B. Crawley W.J. Kernan F. Ogino R.G. Glasser D.G. Hill G. McClellan F. Svrcek 《Physics letters. [Part B]》1975,56(4):400-404
Significant positive correlations are seen for all charge combinations of pion pairs with small rapidity separation. Joint rapidity-azimuthal correlations show that this positive correlation occurs when like (unlike) pions are produced with small (large) separation in azimuth. 相似文献
102.
103.
104.
An empirical potential EPEN has been used to find the stable geometries and approximate hydrogenbond energies of the mixed dimers formed between molecules of water, methanol, ammonia, and methylamine. These results are compared with results in the literature obtained using ab initio methods. 相似文献
105.
106.
Xu HS Tsang MB Liu TX Liu XD Lynch WG Tan WP Vander Molen A Verde G Wagner A Xi HF Gelbke CK Beaulieu L Davin B Larochelle Y Lefort T de Souza RT Yanez R Viola VE Charity RJ Sobotka LG 《Physical review letters》2000,85(4):716-719
Isotopic distributions for light particles and intermediate mass fragments have been measured for 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn, and 124Sn+124Sn collisions at E/A = 50 MeV. Isotope, isotone, and isobar yield ratios are utilized to estimate the isotopic composition of the gas phase at freeze-out. Analyses within the equilibrium limit imply that the gas phase is enriched in neutrons relative to the liquid phase represented by bound nuclei. These observations suggest that neutron diffusion is commensurate with or more rapid than fragment production. 相似文献
107.
108.
Our earlier-established thermodynamic solvate difference rule encompasses thermodynamic relationships for the quantities P=DeltafH degrees, DeltafG degrees, DeltafS degrees, S degrees, Vm, and UPOT for pairs of condensed-phase solvates (including hydrates) having n and m moles, respectively, of bound solvent (including water, i.e., L=H2O), and can be written as P{MpXq.nL,p} approximately P{MpXq.mL,p}+(n-m).thetaP{L,p-p} (with m=0 for the corresponding thermodynamic quantity of the condensed-phase unsolvated parent, P{MpXq,p}), where thetaP{L,p-p} is the incremental contribution per mole of the bound solvent, L, to the property, P, of the solvate in condensed phase, p (where p=solid or liquid). We find that this rule can be extended to supercooled NaOH (and, probably, even more generally). Once established, the parameter thetaP{L,p-p} provides approximate values of the thermodynamic property, P, for the remaining solvates (hydrates) for which data are unknown. The difference rule is here further extended to heat-capacity data, Cp, for both hydrates and other solvates. For solid-phase hydrates, thetaCp{H2O,s-s} is determined to be 42.8 J K(-1) mol(-1). Further, the method is shown to apply also to the organic solvates, DMSO and DMF (the latter is based on a single example), leading to the (tentative) values thetaCp{DMSO,s-s} approximately 105 J K(-1) mol(-1) (at 255 K); approximately 161 J K(-1) mol(-1) (at 350 K), illustrating typical temperature dependence of the thetaCp values. thetaCp{DMF,s-s} approximately 84 J K(-1) mol(-1). For supercooled NaOH, thetaCp{NaOH,l-l}=77 J K(-1) mol(-1). The values of the solvate difference rule parameters provide us with insight into the bonding condition of the solvent molecule, leading to the conclusion that bound solvent water in an ionic environment is ice-like. The situation is more complex within zeolites because water may enter the solvate in a variety of ways. These latter considerations are also briefly discussed with respect to fullerenes. 相似文献
109.
110.
Lattice potential energy estimation for complex ionic salts from density measurements 总被引:4,自引:0,他引:4
This paper is one of a series exploring simple approaches for the estimation of lattice energy of ionic materials, avoiding elaborate computation. The readily accessible, frequently reported, and easily measurable (requiring only small quantities of inorganic material) property of density, rho(m), is related, as a rectilinear function of the form (rho(m)/M(m))(1/3), to the lattice energy U(POT) of ionic materials, where M(m) is the chemical formula mass. Dependence on the cube root is particularly advantageous because this considerably lowers the effects of any experimental errors in the density measurement used. The relationship that is developed arises from the dependence (previously reported in Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609) of lattice energy on the inverse cube root of the molar volume. These latest equations have the form U(POT)/kJ mol(-1) = gamma(rho(m)/M(m))(1/3) + delta, where for the simpler salts (i.e., U(POT)/kJ mol(-1) < 5000 kJ mol(-1)), gamma and delta are coefficients dependent upon the stoichiometry of the inorganic material, and for materials for which U(POT)/kJ mol(-1) > 5000, gamma/kJ mol(-1) cm = 10(-7) AI(2IN(A))(1/3) and delta/kJ mol(-1) = 0 where A is the general electrostatic conversion factor (A = 121.4 kJ mol(-1)), I is the ionic strength = 1/2 the sum of n(i)z(i)(2), and N(A) is Avogadro's constant. 相似文献