首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   12篇
化学   335篇
晶体学   7篇
力学   2篇
数学   8篇
物理学   124篇
  2021年   6篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   16篇
  2011年   24篇
  2010年   10篇
  2009年   8篇
  2008年   15篇
  2007年   18篇
  2006年   18篇
  2005年   21篇
  2004年   31篇
  2003年   21篇
  2002年   22篇
  2001年   14篇
  2000年   10篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1990年   4篇
  1988年   3篇
  1984年   3篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1978年   8篇
  1977年   5篇
  1975年   4篇
  1973年   5篇
  1969年   4篇
  1941年   4篇
  1940年   3篇
  1935年   7篇
  1934年   5篇
  1933年   4篇
  1930年   3篇
  1926年   6篇
  1925年   6篇
  1904年   3篇
  1899年   4篇
  1898年   3篇
  1885年   5篇
排序方式: 共有476条查询结果,搜索用时 31 毫秒
61.
The results are reported of a theoretical study of the addition of small nucleophiles Nu(-) (HO(-), F(-)) to phenylboronic acid Ph-B(OH)(2) and of the stability of the resulting complexes [Ph-B(OH)(2)Nu](-) with regard to Ph-B heterolysis [Ph-B(OH)(2)Nu](-) --> Ph(-) + B(OH)(2)Nu as well as Nu(-)/Ph(-) substitution [Ph-B(OH)(2)Nu](-) + Nu(-) --> Ph(-) + [B(OH)(2)Nu(2)](-). These reactions are of fundamental importance for the Suzuki-Miyaura cross-coupling reaction and many other processes in chemistry and biology that involve phenylboronic acids. The species were characterized by potential energy surface analysis (B3LYP/6-31+G*), examined by electronic structure analysis (B3LYP/6-311++G**), and reaction energies (CCSD/6-311++G**) and solvation energies (PCM and IPCM, B3LYP/6-311++G*) were determined. It is shown that Ph-B bonding in [Ph-B(OH)(2)Nu](-) is coordinate covalent and rather weak (<50 kcal.mol(-1)). The coordinate covalent bonding is large enough to inhibit unimolecular dissociation and bimolecular nucleophile-assisted phenyl anion liberation is slowed greatly by the negative charge on the borate's periphery. The latter is the major reason for the extraordinary differences in the kinetic stabilities of diazonium ions and borates in nucleophilic substitution reactions despite their rather similar coordinate covalent bond strengths.  相似文献   
62.
63.
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4–8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.  相似文献   
64.
ABSTRACT

Inspired by a previous ‘Sauna, sweat and science’ study [Zech et al. Isot Environ Health Stud. 2015;51(3):439–447] and out of curiosity and enthusiasm for stable isotope and sauna research we aimed at answering the question ‘do we sweat (isotopically) what we drink’? We, therefore, pulse-labelled five test persons in a sauna experiment with beverages that were 2H-enriched at about +25,600?‰. Sweat samples were collected during six sauna rounds and the hydrogen isotope composition δ2Hsweat was determined using an isotope ratio mass spectrometer. Before pulse labelling, δ2Hsweat – reflecting by approximation body water – ranged from –32 to –22?‰. This is ~35?‰ enriched compared to usual mid-European drinking water and can be explained with hydrogen-bearing food as well as with the respiratory loss of 2H-depleted vapour. The absence of a clearly detectable 2H pulse in sweat after pulse labelling and δ2Hsweat results of ≤+250?‰ due to a fast 2H equilibration with body water are moreover a clearly negative answer to our research question also in a short-term consideration. Given that the recovery of the tracer based on an isotope mass balance calculation is clearly below 100?%, we finally answer the question ‘where did the rest of the tracer go?’  相似文献   
65.
Density functional theory calculations were performed to understand the detailed reaction mechanism of aluminum alkoxy-catalyzed conversion of glucose to 5-hydroxymethylfurfural (HMF) using Al(OMe)3 as catalyst. Potential energy surfaces were studied for aggregates formed between the organic compounds and Al(OMe)3 and effects of the medium were considered via continuum solvent models. The reaction takes place via two stages: isomerization from glucose to fructose (stage I) and transformation of fructose to HMF (stage II). Stage II includes three successive dehydrations, which begins with a 1,2-elimination to form an enolate (i.e., B), continues with the formation of the acrolein moiety (i.e., D), and ends with the formation of the furan ring (i.e., HMF). All of these steps are facilitated by aluminum alkoxy catalysis. The highest barriers for stage I and stage II are 23.9 and 31.2 kcal/mol, respectively, and the overall catalytic reaction is highly exothermic. The energetic and geometric results indicate that the catalyzed reaction path has feasible kinetics and thermodynamics and is consistent with the experimental process under high temperature (i.e., 120 °C). Remarkably, the released water molecules in stage II act as the product, reactant, proton shuttle, as well as stabilizer in the conversion of fructose to HMF. The metal–ligand functionality of the Al(OMe)3 catalyst, which combines cooperative Lewis acid and Lewis base properties and thereby enables proton shuttling, plays a crucial role in the overall catalysis and is responsible for the high reactivity. © 2019 Wiley Periodicals, Inc.  相似文献   
66.
Glaser T  Schröter S  Bartelt H 《Optics letters》1998,23(24):1933-1935
A new type of a micro-optomechanical dielectric switch in free-space configuration for visible light is proposed and experimentally demonstrated. The combination of scalar and rigorous diffraction analysis of Gaussian beams predicts high high switching efficiency with a single/noise ratio of better than 40 dB.  相似文献   
67.
68.
The photochemistry of binuclear metal-metal bonded complexes [(NC) 5Pt-Tl(solv) x ] (solv is water or dimethylsulfoxide) has been studied in aqueous and dimethylsulfoxide solutions. Both stationary and nanosecond laser flash photolysis have been carried out on the species. The metal-metal bonded complexes have been photolyzed by irradiation into the corresponding intense MMCT absorption bands. Photoexcitation results in the cleavage of the platinum-thallium bond and the formation of a solvated thallous ion and a cyano complex of platinum(IV), [Pt(CN) 5(solv)] (-), in both cases. The species have been characterized by multinuclear NMR and optical spectroscopy. The products of the photoreaction indicate a complementary two-electron transfer occurring between platinum and thallium ions in the binuclear Pt-Tl species. Quantum yield values for the photodecomposition of the species have been determined. The intermediates of the photoinduced metal-to-metal electron transfer have been detected and characterized by optical spectroscopy. The kinetics of transient formation and decomposition have been studied, and mechanisms of the photoactivated redox reaction have been suggested.  相似文献   
69.
Potential energy surface (PES) analyses at the SMD[MP2/6–311++G(d,p)] level and higher-level energies up to MP4(fc,SDTQ) are reported for the fluorinated tertiary carbamate N-ethyl-N-(2,2,2-trifluoroethyl) methyl carbamate ( VII ) and its parent system N,N-dimethyl methyl carbamate ( VI ). Emphasis is placed on the analysis of the rotational barrier about the CN carbamate bond and its interplay with the hybridization of the N-lone pair (NLP). All rotational transition state (TS) structures were found by computation of 1D relaxed rotational profiles but only 2D PES scans revealed the rotation-inversion paths in a compelling fashion. We found four unique chiral minima of VII , one pair each of E- and Z-rotamers, and we determined the eight unique rotational TS structures associated with every possible E/Z-isomerization path. It is a significant finding that all TS structures feature N-pyramidalization whereas the minima essentially contain sp2-hybridized nitrogen. We will show that the TS stabilities are affected by the synergetic interplay between NLP/CO2 repulsion minimization, NLP→σ*(CO) negative hyperconjugation, and two modes of intramolecular through-space electrostatic stabilization. We demonstrate how Boltzmann statistics must be applied to determine the predicted experimental rotational barrier based on the energetics of all eight rotamerization pathways. The computed barrier for VII is in complete agreement with the experimentally measured barrier of the very similar fluorinated carbamate N-Boc-N-(2,2,2-trifluoroethyl)-4-aminobutan-1-ol II . NMR properties of VII were calculated with a variety of density functional/basis set combinations and Boltzmann averaging over the E- and Z-rotamers at our best theoretical level results in good agreement with experimental chemical shifts δ(13C) and J(13C,19F) coupling constants of II (within 6 %).  相似文献   
70.
Synthesis and Structure of the Basic Alkaline Earth Nitrates Sr2(OH)3NO3 and Ba2(OH)3NO3 Sr2(OH)3NO3 and Ba2(OH)3NO3 were synthesized from mixtures of freshly prepared strontium or barium hydroxides and their corresponding nitrates in evacuated quartz glass ampoules at 420 °C and 360 °C, respectively. Single crystals of Sr2(OH)3NO3 were obtained in a solidified Sr(NO3)2 melt after subsequent heating and cooling cycles in air up to 600 °C. The crystal structure of the strontium compound was refined from single crystal and powder X‐ray data. Sr2(OH)3NO3 crystallizes hexagonally in the space group (No. 189) with Z = 1 and the lattice parameters a = 6.624(2) Å and c = 3.560(1) Å (single crystal data). The powder pattern of Ba2(OH)3NO3 was indexed isotypically to Sr2(OH)3NO3 with the lattice parameters a = 6.9260(1) Å and c = 3.8086(1) Å, and the crystal structure was refined from powder X‐ray data. Alkaline earth ions in the structures are surrounded trigonal‐prismatically by six hydroxide ions. These prisms are sharing their trigonal faces along [001] building up columns. These columns are connected in the ab‐plane by shared edges, and form hexagonal tunnels with the nitrate groups stacked inside. Infrared and thermoanalytical data of Sr2(OH)3NO3 are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号