首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   12篇
化学   155篇
力学   1篇
数学   10篇
物理学   100篇
  2021年   3篇
  2020年   4篇
  2019年   7篇
  2017年   2篇
  2016年   3篇
  2015年   10篇
  2014年   8篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   10篇
  2006年   12篇
  2005年   8篇
  2004年   8篇
  2003年   10篇
  2002年   11篇
  2001年   5篇
  2000年   12篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1985年   8篇
  1984年   8篇
  1983年   13篇
  1982年   4篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
  1963年   1篇
  1916年   1篇
排序方式: 共有266条查询结果,搜索用时 312 毫秒
201.
Gas-phase oxadisulfane (HSOH), the missing link between the well-known molecules hydrogen peroxide (HOOH) and disulfane (HSSH), was synthesized by flash vacuum pyrolysis of di-tert-butyl sulfoxide. Using mass spectrometry, the pyrolysis conditions have been optimized towards formation of HSOH. Microwave spectroscopic investigation of the pyrolysis products allowed-assisted by high-level quantum-chemical calculations--the first measurement of the rotational-torsional spectrum of HSOH. In total, we have measured approximately 600 lines of the rotational-torsional spectrum in the frequency range from 64 GHz to 1.9 THz and assigned some 470 of these to the rotational-torsional spectrum of HSOH in its ground torsional state. Some 120 out of the 600 lines arise from the isotopomer H(34)SOH. The HSOH molecule displays strong c-type and somewhat weaker b-type transitions, indicating a nonplanar skew chain structure, similar to the analogous molecules HOOH and HSSH. The rotational constants (MHz) of the main isotopomer (A=202 069, B=15 282, C=14 840), determined by applying a least-squares analysis to the presently available data set, are in excellent agreement with those predicted by quantum-chemical calculations (A=202 136, B=15 279, C=14 840). Our theoretical treatment also derived the following barrier heights against internal rotation in HSOH (when in the cis and trans configurations) to be V(cis) approximately equal to 2216 cm(-1) and V(trans) approximately equal to 1579 cm(-1). The internal rotational motion results in detectable torsional splittings that are dependent on the angular momentum quantum numbers J and K(a).  相似文献   
202.
N-Acylimines (2) possess the characteristics of both hetero-1,3-dienes and dienophiles. They react with the kinetically stabilised cyclobutadienes 1 to form 4-aza-2-oxabicyclo[4.2.0]octa-3,7-dienes (3) and/or 2-azabicyclo[2.2.0]hex-5-enes (4). Compounds of the type 3 undergo acid-catalysed isomerisation to give compounds 4. Homocyclopropenylium intermediates of the type 5 are supposed to be involved in both processes (1 + 2 → 3 + 4 and 3 → 4).  相似文献   
203.
204.
The space between the stars is not void, but filled with interstellar matter, mainly composed of dust and gas, which gather in large interstellar clouds. In our Galaxy these interstellar clouds are distributed along a thin, but extended layer which basically traces out the spiral distribution of matter: the stars, the gas, and the dust component. Up to the present time more than 100 different molecules have been identified in interstellar molecular clouds. The majority of the interstellar molecules constitute carbon containing organic substances. During the past years, overwhelming evidence has been gathered, mainly through spectroscopic observations, that interstellar molecular clouds provide the birthplaces for stars. In fact detailed high spectral and spatial resolution spectroscopic measurements reveal physical and chemical processes of the intricate star formation process.  相似文献   
205.
The molecular and crystal structures of the hydrochlorides of d-nebivolol, dl-nebivolol, and seven nebivolol isomers have been determined by X-ray structure analysis. The absolute configuration of all the compounds could be determined unambiguously using anomal dispersion effects. Two compounds, dl-nebivolol (NEB-1d,l) and the (S,R,S,R) nebivolol isomer (NEB-6), crystallize as racemic mixtures in the centrosymmetric space group P-1. d-Nebivolol and six nebivolol isomers crystallize in space group P212121. The d- and l-nebivolol molecules in NEB-1d and NEB-1d,l adopt a conformation which is significantly different compared with that of all nebivolol isomers. With the exception of dl-nebivolol (NEB-1d,l) numerous intermolecular hydrogen bonds connect the molecules forming molecular layers.  相似文献   
206.
The rotational spectra of formaldehyde, H212C16O and its isotopic species H213C16O, H212C18O, and H213C18O have been investigated in the ground vibrational state in the frequency region between 8 and 460 GHz. For most cases in which measurements of the a-type R- and Q-branch transitions already existed the accuracy of the line position has been improved to about 10 kHz. For H212C16O and H213C16O a large number of ΔKa = ±2 transitions were measured with similar accuracy. These new data when combined with all other available data and appropriate weightings lead to a set of ground state parameters which for the first time are compatible with infrared and ultraviolet data. The rotational constants (and 3σ standard deviations) obtained using Watson's A-reduced Hamiltonian are:
  相似文献   
207.
We present the computational de novo design of synthetically accessible chemical entities that mimic the complex sesquiterpene natural product (?)‐Englerin A. We synthesized lead‐like probes from commercially available building blocks and profiled them for activity against a computationally predicted panel of macromolecular targets. Both the design template (?)‐Englerin A and its low‐molecular weight mimetics presented nanomolar binding affinities and antagonized the transient receptor potential calcium channel TRPM8 in a cell‐based assay, without showing target promiscuity or frequent‐hitter properties. This proof‐of‐concept study outlines an expeditious solution to obtaining natural‐product‐inspired chemical matter with desirable properties.  相似文献   
208.
The rotational spectra of the HSS and DSS radicals were studied in selected regions between 331 and 883 GHz. The radicals were produced by discharging a gaseous mixture of hydrogen (or deuterium) and hydrogen sulfide in the cell. The observation of the b-type Q-branch and R-branch lines with K(a) = 2-1 and 3-2 for HSS and DSS, respectively, as well as the a-type R-branch lines allowed the improvement and the determination of the molecular constants among them (in MHz) We have reevaluated the harmonic force field of HSS and the ground state average and approximate equilibrium structural parameters. For the latter, we obtained r(HS) = 135.23 pm, r(SS) = 196.03 pm, and angle = 101.74 degrees. These results are compared with those from previous and own quantum chemical calculations as well as with results of related molecules. Copyright 2000 Academic Press.  相似文献   
209.
210.
The purpose of this work was to obtain reliable absolute intensities for the nu6 band of H2O2. It was undertaken because strong discrepancies exist between the different nu6 band intensities which are presently available in the literature (A. Perrin, A. Valentin, J.-M. Flaud, C. Camy-Peyret, L. Schriver, A. Schriver, and P. Arcas, J. Mol. Spectrosc. 1995. 171, 358), (R. May, J. Quant. Radiat. Transfer 1991. 45, 267), and (R. L. Sams, personal communication). The method which was chosen in the present work was to measure simultaneously the far-infrared absorptions and the nu6 absorptions of H2O2. Consequently, Fourier transform spectra of H2O2 were recorded at Giessen in a spectral range (370-1270 cm-1) which covers both the R branch of the torsion-rotation band and the P branch of the nu6 band which appear at low and high wavenumbers, respectively. From the low wavenumber data, the partial pressure of H2O2 present in the cell during the recording of the spectra was determined by calibrating the observed absorptions in the torsion-rotation band with intensities computed using the permanent H2O2 dipole moment measured by Stark effect (A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M. Badaoui, and J. Koput, J. Mol. Spectrosc. 1996. 176, 287-296) and [E. A. Cohen and H. M. Pickett, J. Mol. Spectrosc. 1981. 87, 582-583). In the high frequency range, this value of the partial pressure of H2O2 was used to measure absolute line intensities in the nu6 band. Finally, the line intensities in the nu6 band were fitted using the theoretical methods described in detail in our previous works. Using these new results on line intensities together with the line position parameters that we obtained previously, a new synthetic spectra of the nu6 band was generated, leading to a total band intensity of 0.185 x 10(-16) cm-1/(molecule.cm-2) at 296 K. It has to be pointed out that the new line intensities agree to within the experimental uncertainties with the individual line intensity measurements performed previously by May and by Sams. Copyright 1999 Academic Press.  相似文献   
H212C16OH213C16OH212C18OH213C18O
A/MHz281 970.572 (24)281 993.258(135)281 961.94 (39)281 985.00 (93)
B/MHz38 836.0456(13)37 811.0887(25)36 904.1693(66)35 859.256(10)
C/MHz34 002.2034(12)33 213.9790(25)32 511.5311(63)31 697.868(10)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号