首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3513篇
  免费   17篇
  国内免费   15篇
化学   2054篇
晶体学   59篇
力学   116篇
数学   565篇
物理学   751篇
  2022年   33篇
  2021年   41篇
  2020年   52篇
  2019年   47篇
  2018年   40篇
  2017年   41篇
  2016年   70篇
  2015年   80篇
  2014年   81篇
  2013年   139篇
  2012年   163篇
  2011年   176篇
  2010年   118篇
  2009年   92篇
  2008年   178篇
  2007年   198篇
  2006年   196篇
  2005年   154篇
  2004年   126篇
  2003年   109篇
  2002年   122篇
  2001年   69篇
  2000年   73篇
  1999年   58篇
  1998年   41篇
  1997年   39篇
  1996年   55篇
  1995年   36篇
  1994年   51篇
  1993年   54篇
  1992年   47篇
  1991年   39篇
  1990年   33篇
  1989年   33篇
  1988年   26篇
  1986年   23篇
  1985年   32篇
  1984年   40篇
  1983年   27篇
  1982年   40篇
  1981年   35篇
  1980年   39篇
  1979年   37篇
  1978年   32篇
  1977年   33篇
  1976年   24篇
  1975年   26篇
  1974年   36篇
  1973年   38篇
  1970年   19篇
排序方式: 共有3545条查询结果,搜索用时 15 毫秒
81.

Background  

Protein kinase A type I (PKAI) and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R) subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB) in vivo.  相似文献   
82.
Precise microwave heating has changed the way many small molecules are being synthesized and, currently, the field of solid‐phase peptide synthesis is undergoing dramatic changes owing to the use of microwave heating. To fully reap the benefits of precise microwave heating for the formation of amide bonds in peptide synthesis, it is important to understand the kinetics of formation and break‐down of activated esters and their N‐acylation of the nascent peptide chain at elevated temperatures. Herein, we present systematic studies of, first, the rate of formation of activated esters by NMR spectroscopy and, second, their N‐acylation during peptide synthesis. A study of the amount of residual water in the solvents revealed a significant effect on electrophilic reagents and intermediates. This observation was expanded into a general study of microwave heating in peptide synthesis.  相似文献   
83.
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.  相似文献   
84.
Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the CuI‐catalyzed alkyne–azide cycloaddition and its strain‐promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site‐specific manner and recognized by antibody binding to demonstrate the proof‐of‐concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.  相似文献   
85.
We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 μm and an interpillar distance of 2.5 μm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about hmin = 0.3 (reduction based on the pillar diameter), corresponding to 1.6 μm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance.  相似文献   
86.
87.
Summary.  5-Isopropyl-6-naphthyl uracil and 5-isopropyl-6-naphthyl-2-thiouracil were alkylated to give N-1-(ethoxymethyl and methylthiomethyl) uracil and S2-cyclohexyl-thiouracil, respectively. 5-Ethyl-6-naphthyl uracil and 5-ethyl-6-naphthyl-2-thiouracil afforded N-1-(ethoxymethyl, methoxy-methyl, methylthiomethyl, acetoxyethoxy methyl and hydroxyethoxy methyl) uracil and S2-((2,2- diethoxyethyl), methoxycarbonylmethyl, ethoxycarbonylpropyl, methylthiomethyl, ethoxymethyl, methyl and cyclohexyl)-thiouracil upon alkylation. Received September 25, 2001. Accepted (revised) December 3, 2001  相似文献   
88.
The chemical bonding, electronic structure, and optical properties of metal-organic framework-5 (MOF-5) were systematically investigated using ab initio density functional calculations. The unit cell volume and atomic positions were optimized with the Perdew-Burke-Ernzerhof (PBE) functional leading to a good agreement between the experimental and the theoretical equilibrium structural parameters. The calculated bulk modulus indicates that MOF-5 is a soft material. The estimated band gap from a density of state (DOS) calculation for MOF-5 is about 3.4 eV, indicating a nonmetallic character. As MOFs are considered as potential materials for photocatalysts, active components in hybrid solar cells, and electroluminescence cells, the optical properties of this material were investigated. The detailed analysis of chemical bonding in MOF-5 reveals the nature of the Zn-O, O-C, H-C, and C-C bonds, that is, Zn-O having mainly ionic interaction whereas O-C, H-C, and C-C exhibit mainly covalent interactions. The findings in this paper may contribute to a comprehensive understanding about this kind of material and shed insight into the synthesis and application of novel and stable MOFs.  相似文献   
89.
The anharmonic OH stretching vibrational frequencies, ν(OH), for the first-shell water molecules around the Li(+), Ca(2+), Mg(2+), and Al(3+) ions in dilute aqueous solutions have been calculated based on classical molecular dynamics (MD) simulations and quantum-mechanical (QM) calculations. For Li(+)(aq), Ca(2+)(aq), Mg(2+)(aq), and Al(3+)(aq), our calculated IR frequency shifts, Δν(OH), with respect to the gas-phase water frequency, are about -300, -350, -450, and -750?cm(-1), compared to -290, -290, -420, and -830?cm(-1) from experimental infrared (IR) studies. The agreement is thus quite good, except for the order between Li(+) and Ca(2+). Given that the polarizing field from the Ca(2+) ion ought to be larger than that from Li(+)(aq), our calculated result seems reasonable. Also the absolute OH frequencies agree well with experiment. The method we used is a sequential four-step procedure: QM(electronic) to make a force field+MD simulation+QM(electronic) for point-charge-embedded M(n+) (H(2)O)(y) (second?shell) (H(2)O)(z) (third?shell) clusters+QM(vibrational) to yield the OH spectrum. The many-body Ca(2+)-water force-field presented in this paper is new. IR intensity-weighting of the density-of-states frequency distributions was carried out by means of the squared dipole moment derivatives.  相似文献   
90.
α-Thymidine (4) was synthesized from thymidine (1) in 3 steps in 36% overall yield without using chro-matography and with the possibility of increasing the yield to 85% by reusing the remaining α,β-mixture. 1-(2-Deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl)thymine (3) was further converted to 1-(2-deoxy-α-D-erythro-pentofuranosyl)-5-methylcytosine (5) .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号