We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including amphibious macrophytes. Lichens were also included in the study. We were interested in the following key aspects: (a) does the water column function effectively as an 'external UV-B filter'?; (b) do aquatic plants need less 'internal UV-B screening' than terrestrial plants?; (c) what role does UV screening play in protecting the various plant groups from UV-B damage, such as the formation of thymine dimers?; and (d) since early land 'plants' (such as the predecessors of present-day cyanobacteria, lichens and mosses) experienced higher UV-B fluxes than higher plants, which evolved later, are primitive aquatic and land organisms (cyanobacteria, algae, lichens, mosses) better adapted to present-day levels of UV-B than higher plants? Furthermore, polychromatic action spectra for the induction of UV screening pigments of aquatic organisms have been determined. This is relevant for translating 'physical' radiation measurements of solar UV-B into 'biological' and 'ecological' effects. From the action spectra, radiation amplification factors (RAFs) have been calculated. These action spectra allow us to determine any mitigating or antagonistic effects in the ecosystems and therefore qualify the damage prediction for the ecosystems under study. We summarize and discuss the main results based on three years of research of four European research groups. The central theme of the work was the investigation of the effectiveness of the various screening compounds from the different species studied in order to gain some perspective of the evolutionary adaptations from lower to higher plant forms. The induction of mycosporine-like amino acids (MAAs) was studied in the marine dinoflagellate Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in three photosynthetic organisms, representing very different taxonomic groups and different habitats. In ultraviolet photobiology, action spectra mainly serve two purposes: (1) identification of the molecular species involved in light absorption; and (2) calculation of radiation amplification factors for assessing the effect of ozone depletion. Radiation amplification factors (RAFs) were calculated from the action spectra. In a somewhat simplified way, RAF can be defined as the percent increase of radiation damage for a 1% depletion of the ozone layer. Central European summer conditions were used in the calculations, but it has been shown that RAF values are not critically dependent on latitude or season. If only the ultraviolet spectral region is considered, the RAF values obtained are 0.7 for the green alga Prasiola stipitata, 0.4 for the dinoflagellate Gyrodinium dorsum, and 1.0 for the cyanobacterium Anabaena sp. In the case of P. stipitata, however, the effect of visible light (PAR, photosynthetically active radiation, 400-700 nm) is sufficient to lower the RAF to about 0.4, while the PAR effect for G. dorsum is negligible. RAFs for some damage processes, such as for DNA damage (RAF=2.1 if protective effects or photorepair are not considered [1]), are higher than those above. Our interpretation of this is that if the ozone layer is depleted, increased damaging radiation could overrule increased synthesis of protective pigments. In addition to investigating the functional effectiveness of the different screening compounds, direct UV effects on a number of key processes were also studied in order to gain further insight into the ability of the organisms to withstand enhanced UV-B radiation. To this end, the temperature-dependent repair of cyclobutane dimers (CPD) and (6-4) photoproducts induced by enhanced UV-B was studied in Nicotiana tabacum, and the UV-B induction of CPD was studied in the lichen Cladonia arbuscula. Also, photosynthesis and motility were monitored and the response related to the potential function of the screening compounds of the specific organism. 相似文献
Thiol-functionalised silicone-oils were crosslinked with silver nanoparticles to give mechanically consistent elastomers with high self-healing power. The materials were broken into small pieces and put together in intimate contact for 24 hours at room temperature, observing a complete macroscopic healing and a quantitative recovery of compression-stress and strain. 相似文献
In this work we continue our study initiated in Fonseca and Ponce (2011) [11] on the uniqueness properties of real solutions to the IVP associated to the Benjamin–Ono (BO) equation. In particular, we shall show that the uniqueness results established in Fonseca and Ponce (2011) [11] do not extend to any pair of non-vanishing solutions of the BO equation. Also, we shall prove that the uniqueness result established in Fonseca and Ponce (2011) [11] under a hypothesis involving information of the solution at three different times cannot be relaxed to two different times. 相似文献
The periodic trends in metal-metal interactions in even-electron and mixed-valence [M2Cl9]z- face-shared systems, involving transition metals in Groups 4 to 8 and electronic configurations ranging from d1d1 through to d5d5 and from d1d2 through to d4d5, have been investigated by calculating metal-metal bonding and spin polarization (exchange) effects using density functional theory. These two terms are in opposition to one another and their relative difference determines the extent to which the metal-based electrons are delocalized and thus the degree of metal-metal bonding. Remarkably strong linear correlations between the two terms, and between each term and the square of the spin density on the metal centres, have been obtained for all group and period series considered, and are discussed in terms of their dependence on the metal orbital properties and electron density. 相似文献
Solid solutions of Bi1?xYx[Fe(CN)6]·4H2O (0?<?x?<?1) complexes were synthesized and characterized. The crystal structures were refined by Rietveld analysis using X-ray powder diffraction data. The complexes of the series crystallized in the orthorhombic system, space group Cmcm. The gradual decrease in cell volume indicates that the substitution of Bi3+ by Y3+ was appropriately materialized. The thermal behavior was studied by thermogravimetric and differential thermal analysis. A single phase of perovskite-type Bi1?xYxFeO3 powders was obtained by thermal decomposition of the complexes at about 600 °C. The obtained products were identified and characterized by energy-dispersive spectroscopy, Raman and Fourier transform infrared spectroscopy and powder X-ray diffraction. The size and morphology of the complexes and their thermal decomposition products were evaluated by scanning electron microscopy. Thermal analysis showed that the complexes were good intermediaries for the synthesis of high-purity mixed oxides with a uniform particle size of the order of nanometers. To evaluate the effect of doping with yttrium, electrical transport measurements were performed.
The multipurpose portable ultra‐high‐vacuum‐compatible chamber described in detail in this article has been designed to carry out grazing‐incidence X‐ray scattering techniques on the BM25‐SpLine CRG beamline at the ESRF. The chamber has a cylindrical form, built on a 360° beryllium double‐ended conflate flange (CF) nipple. The main advantage of this chamber design is the wide sample temperature range, which may be varied between 60 and 1000 K. Other advantages of using a cylinder are that the wall thickness is reduced to a minimum value, keeping maximal solid angle accessibility and keeping wall absorption of the incoming X‐ray beam constant. The heat exchanger is a customized compact liquid‐nitrogen (LN2) continuous‐flow cryostat. LN2 is transferred from a storage Dewar through a vacuum‐isolated transfer line to the heat exchanger. The sample is mounted on a molybdenum support on the heat exchanger, which is equipped with a BORALECTRIC heater element. The chamber versatility extends to the operating pressure, ranging from ultra‐high vacuum (<10?10 mbar) to high pressure (up to 3 × 103 mbar). In addition, it is equipped with several CF ports to allocate auxiliary components such as capillary gas‐inlet, viewports, leak valves, ion gun, turbo pump, etc., responding to a large variety of experiment requirements. A movable slits set‐up has been foreseen to reduce the background and diffuse scattering produced at the beryllium wall. Diffraction data can be recorded either with a point detector or with a bi‐dimensional CCD detector, or both detectors simultaneously. The system has been designed to carry out a multitude of experiments in a large variety of environments. The system feasibility is demonstrated by showing temperature‐dependence grazing‐incidence X‐ray diffraction and conductivity measurements on a 20 nm‐thick La0.7Ca0.3MnO3 thin film grown on a SrTiO3(001) substrate. 相似文献
We review the application of impedance spectroscopy in dye-sensitized solar cells, quantum dot-sensitized solar cells and organic bulk heterojunction solar cells. We emphasize the interpretation of the impedance parameters for determining the internal features of the device, concerning the carrier distribution, materials properties such as the density of states and/or doping of the semiconductors, and the match of energy levels for photoinduced charge generation and separation. Another central task is the determination of recombination mechanisms from the measured resistances, and the factors governing the device performance by combined analysis of resistances as a function of voltage and current-voltage curves. 相似文献
Here we report the metallophilic attraction driven gel-forming capability of four cysteine-containing short peptides at neutral pH. Such peptides were designed to have an isoelectric point (pI) close to 7, aided by the introduction of an arginine unit with its highly basic guanidinium group. 相似文献
Exploiting the ubiquity of cell phones for quantitative chemical sensing imposes strong demands on interfacing devices. They should be autonomous, disposable, and integrate all necessary calibration and actuation elements. In addition, a single design should couple universally to a variety of cell phones, and operate in their default configuration. Here, we demonstrate such a concept and its implementation as a quantitative glucose meter that integrates finger pumps, unidirectional valves, calibration references, and focusing optics on a disposable device configured for universal video acquisition. 相似文献