首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   40篇
  国内免费   7篇
化学   1099篇
晶体学   6篇
力学   13篇
数学   258篇
物理学   200篇
  2020年   16篇
  2019年   15篇
  2017年   11篇
  2016年   23篇
  2015年   30篇
  2014年   32篇
  2013年   62篇
  2012年   26篇
  2011年   37篇
  2010年   37篇
  2009年   37篇
  2008年   76篇
  2007年   53篇
  2006年   68篇
  2005年   54篇
  2004年   44篇
  2003年   57篇
  2002年   54篇
  2001年   40篇
  2000年   31篇
  1999年   30篇
  1998年   27篇
  1997年   25篇
  1996年   29篇
  1995年   27篇
  1994年   43篇
  1993年   37篇
  1992年   51篇
  1991年   22篇
  1990年   14篇
  1989年   17篇
  1988年   21篇
  1987年   31篇
  1986年   24篇
  1985年   22篇
  1984年   23篇
  1983年   28篇
  1982年   21篇
  1981年   16篇
  1980年   21篇
  1979年   21篇
  1978年   28篇
  1977年   17篇
  1976年   12篇
  1975年   17篇
  1974年   25篇
  1973年   20篇
  1972年   16篇
  1971年   21篇
  1970年   12篇
排序方式: 共有1576条查询结果,搜索用时 78 毫秒
81.
82.
In biological systems, X‐ray absorption spectroscopy (XAS) can determine structural details of metal binding sites with high resolution. Here a method enabling an automated analysis of the corresponding EXAFS data is presented, utilizing in addition to least‐squares refinement the prior knowledge about structural details and important fit parameters. A metal binding motif is characterized by the type of donor atoms and their bond lengths. These fit results are compared by bond valance sum analysis and target distances with established structures of metal binding sites. Other parameters such as the Debye–Waller factor and shift of the Fermi energy provide further insights into the quality of a fit. The introduction of mathematical criteria, their combination and calibration allows an automated analysis of XAS data as demonstrated for a number of examples. This presents a starting point for future applications to all kinds of systems studied by XAS and allows the algorithm to be transferred to data analysis in other fields.  相似文献   
83.
The reactions of Me2MCl2 (M = Si, Ge, Sn), Si2Me4Cl2, Si2Me2Cl3, Si2Me2Cl4 and CH2(SiCl2Me)2, and suitable mixtures thereof, with H2S / NEt3 and Li2E (E = Se, Te) have been investigated and lead to a variety of new group 14 chalcogenide systems.  相似文献   
84.
Abstract

Alkyl- or arylbis(trimethylsilyl)phosphines as well as tris(trimethylsilyl)phosphine and the corresponding arsines react with acyl chlorides to give [1-(trimethylsiloxy)alkylidene]phosphines 1 and -arsines 2; most of their 2,2-dimethylpropylidene derivatives are thermally stable at room temperature. With the same class of phosphines as starting compounds and carbon disulfide [bis(trimethylsilylsulfano)methylidene]phosphines 3 are formed, whereas [(dialkylamino)methylidene]-4 and [diarylmethylidene]phosphines 5 or the corresponding arsines 6 and 7 can be obtained from acyl amides or ketones.1  相似文献   
85.
86.
One-hundred-two years ago, on 21 April 1910, the Austrian chemist Carl Auer von Welsbach published a short comment on a fundamental discovery he had made in the field of nuclear sciences. He reported that “jonium” (230Th) was able to induce radioactivity in other materials if stored in contact with the ionium sample. He was well aware that this observation was “not quite in agreement with current theories”, because, as a basic principle, a radioactive substance cannot activate an inactive substance. Since he could not remove any superficial contamination, he concluded that the previously inactive materials had become radioactive themselves. Auer von Welsbach predicted that this observation “might be of importance for the mysterious field of radioactivity research”. In fact, we believe that in this experiment he incidentally discovered neutron activation and the production of artificial radionuclides (24 years before I. Curie and F. Joliot) or even induced nuclear fission. The neutron source in his experiments is yet unknown and shall be identified in this project. The neutrons could have been produced from nuclear reactions with impurities of beryllium in the sample. Auer von Welsbach may even have observed nuclear fission 29 years before O. Hahn, F. Straßmann, L. Meitner and O. R. Frisch. In any case, he may have noticed the effects of neutron radiation—22 years before its discovery by J. Chadwick. The main aim of this interdisciplinary project (of which preliminary results are presented herein) is to repeat the 1910-experiment and to identify the source of the neutrons. It will be equally important to investigate the historical reasons and circumstances why Auer’s report remained mostly uncommented in the scientific community. The hypothetical consequences are worth discussion: Auer’s publication could have started the “nuclear age” much earlier than it finally began, with all the consequences for mankind.  相似文献   
87.
88.
Following Mie theory, nanoparticles made of a high‐refractive‐index dielectric, such as silicon, exhibit a resonator‐like behavior and very rich resonance spectra. Which electric or magnetic particle mode is excited depends on the wavelength, the refractive‐index contrast relative to the environment, and the geometry of the nanoparticle itself. In addition, the spatial structure of the impinging light field plays a major role in the excitation of the nanoparticle resonances. Here, it is shown that, by tailoring the excitation field, individual multipole resonances can be selectively addressed while suppressing the excitation of other particle modes. This enables a detailed study of selected individual resonances without interference by the other modes.

  相似文献   

89.
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2SiMe3)(N‘Ar)2}] (AM=K, Rb, or Cs) [N‘Ar=N(SiMe3)(Dipp), where Dipp=2,6-iPr2-C6H3] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N‘Ar)}], [{AM(N‘Ar)⋅TMEDA}], and [{AM(N‘Ar)⋅PMDETA}] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2O)2Na(nBu)Mn[(N‘Ar)2], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.  相似文献   
90.
Estuaries are key ecosystems with unique biodiversity and are of high economic importance. Along the estuaries, variations in environmental parameters, such as salinity and light penetration, can modify the characteristics of dissolved organic matter (DOM). Nevertheless, there is still limited information about the atomic-level transformations of DOM in this ecosystem. Solid-state NMR spectroscopy provides unique insights into the nature of functional groups in DOM. A major limitation of this technique is its lack of sensivity, which results in experimental time of tens of hours for the acquisition of 13C NMR spectra and generally precludes the observation of 15N nuclei for DOM. We show here how the sensitivity of solid-state NMR experiments on DOM of Seine estuary can be enhanced using dynamic nuclear polarization (DNP) under magic-angle spinning. This technique allows the acquisition of 13C NMR spectra of these samples in few minutes, instead of hours for conventional solid-state NMR. Both conventional and DNP-enhanced 13C NMR spectra indicate that the 13C local environments in DOM are not strongly modified along the Seine estuary. Furthermore, the sensitivity gain provided by the DNP allows the detection of 15N NMR signal of DOM, in spite of the low nitrogen content. These spectra reveal that the majority of nitrogen is in the amide form in these DOM samples and show an increased disorder around these amide groups near the mouth of the Seine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号