首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   1篇
  国内免费   2篇
化学   87篇
力学   3篇
数学   30篇
物理学   72篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   17篇
  2012年   7篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1947年   1篇
  1941年   1篇
  1938年   1篇
  1937年   1篇
  1931年   1篇
  1930年   1篇
排序方式: 共有192条查询结果,搜索用时 11 毫秒
41.
42.
Phenols ( I ) are extremely relevant chemical functionalities in natural, synthetic and industrial chemistry. Their corresponding electron-rich anions, namely phenolates ( I ), are characterized by interesting physicochemical properties that can be drastically altered upon light excitation. Specifically, phenolates ( I ) become strong reducing agents in the excited state and are able to generate reactive radicals from suitable precursors via single-electron transfer processes. Thus, these species can photochemically trigger strategic bond-forming reactions, including their direct aromatic C−H functionalization. Moreover, substituted phenolate anions can act as photocatalysts to enable synthetically useful organic transformations. An alternative mechanistic manifold is represented by the ability of phenolate derivatives I to form ground state electron donor-acceptor (EDA) complexes with electron-poor radical sources. These complementary scenarios have paved the way for the development of a wide range of relevant organic reactions. In this Minireview, we present the main examples of this research field, and give insight on emerging trends in phenols photocatalysis towards richer organic synthesis.  相似文献   
43.
吴世晖  余定伟  厉振虹  JONES  M.  JR. 《化学学报》1986,44(1):67-71
用锂有机物的方法合成了四种含有环丙基有机硅化合物,对上述每种化合物中可能存在着的立体异构进行了分离和和构型测定。  相似文献   
44.
Silver catalyzed peroxydisulphate oxidation of acetone in the presence of olefins and protonated heteroaromatic bases leads to compound I via addition of acetonyl radical to the olefin and scavenging of the resulting radical adduct by the aromatic base.  相似文献   
45.
PMMA based nanocomposites filled with calcium carbonate nanoparticles (CaCO3) have been prepared by in situ polymerization approach. In order to improve inorganic nanofillers/polymer compatibility, PBA chains have been grafted onto CaCO3 nanoparticle surface. Morphological analysis performed on nanocomposite fractured surfaces has revealed that the CaCO3 modification induces homogeneous and fine dispersion of nanoparticles into PMMA as well as strong interfacial adhesion between the two phases. Mechanical tests have shown that both unmodified and modified CaCO3 are responsible for an increase of the Young's Modulus, whereas only PBA-grafted nanoparticles allow to keep unchanged impact strength, strongly deteriorated by adding unmodified CaCO3. Finally, the presence of CaCO3 nanoparticles significantly improves the abrasion resistance of PMMA also modifying its wear mechanism.  相似文献   
46.
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.  相似文献   
47.
We have characterized the dissolved state of microcrystalline cellulose (MCC) in cold alkali [2.0 M NaOH(aq)] solutions using a combination of small angle X-ray (SAXS) and static light scattering (SLS), \(^1\)H NMR, NMR self-diffusion, and rheology experiments. NMR and SAXS data demonstrate that the cellulose is fully molecularly dissolved. SLS, however, shows the presence of large concentration fluctuations in the solution, consistent with significant attractive cellulose-cellulose interactions. The scattering data are consistent with fractal cellulose aggregates of micrometre size having a mass fractal dimension \(D\sim 1.5\). At 25\(\,^{\circ }\mathrm {C}\) the solution structure remains unchanged on the time scale of weeks. However, upon heating the solutions above 35\(\,^{\circ }\mathrm {C}\) additional aggregation occurs on the time scale of minutes. Decreasing or increasing the NaOH concentration away from the “optimum” 2 M also leads to additional aggregation. This is seen as an increase of the SAXS intensity at lower q values. Addition of urea (1.8 and 3.6 M, respectively) does not significantly influence the solution structure. With these examples, we will discuss how scattering methods can be used to assess the quality of solvents for cellulose.  相似文献   
48.
We consider the one-dimensional nonlinear Schrödinger equation with Dirichlet boundary conditions in the fully resonant case (absence of the mass term). We investigate conservation of small amplitude periodic solutions for a large measure set of frequencies. In particular we show that there are infinitely many periodic solutions which continue the linear ones involving an arbitrary number of resonant modes, provided the corresponding frequencies are large enough, say greater than a certain threshold value depending on the number of resonant modes. If the frequencies of the latter are close enough to such a threshold, then they can not be too distant from each other. Hence we can interpret such solutions as perturbations of wave packets with large wave number.  相似文献   
49.
Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine. An essential feature for biomedical application of MSNs is limiting MSN size in the sub-micrometer regime to control uptake and cell viability. However, careful size tuning in such a regime remains still challenging. We aim to tackling this issue by developing two synthetic procedures for MSN size modulation, performed in homogenous aqueous/ethanol solution or two-phase aqueous/ethyl acetate system. Both approaches make use of tetraethyl orthosilicate as precursor, in the presence of cetyltrimethylammonium bromide, as structure-directing agent, and NaOH, as base-catalyst. NaOH catalyzed syntheses usually require high temperature (>80 °C) and large reaction medium volume to trigger MSN formation and limit aggregation. Here, a successful modulation of MSNs size from 40 up to 150 nm is demonstrated to be achieved by purposely balancing synthesis conditions, being able, in addition, to keep reaction temperature not higher than 50 °C (30 °C and 50 °C, respectively) and reaction mixture volume low. Through a comprehensive and in-depth systematic morphological and structural investigation, the mechanism and kinetics that sustain the control of MSNs size in such low dimensional regime are defined, highlighting that modulation of size and pores of the structures are mainly mediated by base concentration, reaction time and temperature and ageing, for the homogenous phase approach, and by temperature for the two-phase synthesis. Finally, an in vitro study is performed on bEnd.3 cells to investigate on the cytotoxicity of the MNSs.  相似文献   
50.
We correct a Feynman diagram presented in the paper ‘Heavy neutral gauge bosons at the LHC in an extended MSSM’, published in Nuclear Physics B 866 (2013) 293.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号