首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   1篇
  国内免费   1篇
化学   109篇
数学   3篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   15篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   16篇
  2005年   11篇
  2004年   11篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1979年   1篇
  1975年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
21.
Park J  Boltje TJ  Boons GJ 《Organic letters》2008,10(19):4367-4370
alpha-Linked 2-deoxyglycosides were conveniently obtained by employing a glycosyl donor having a participating ( S)-(phenylthiomethyl)benzyl moiety at C-6, whereas 2,6-dideoxy-alpha-glycosides could be prepared by BF 3.Et 2O-promoted activation of allyl glycosyl donors.  相似文献   
22.
Tetra-acylated lipid As derived from Porphyromonas gingivalis LPS have been synthesized using a key disaccharide intermediate functionalized with levulinate (Lev), allyloxycarbonate (Alloc) and anomeric dimethylthexylsilyl (TDS) as orthogonal protecting groups and 9-fluorenylmethoxycarbamate (Fmoc) and azido as amino protecting groups. Furthermore, an efficient cross-metathesis has been employed for the preparation of the unusual branched R-(3)-hydroxy-13-methyltetradecanic acid and (R)-3-hexadecanoyloxy-15-methylhexadecanoic acid of P. gingivalis lipid A. Biological studies have shown that the synthetic lipid As cannot activate human and mouse TLR2 and TLR4 to produce cytokines. However, it has been found that the compounds are potent antagonist of cytokine secretion by human monocytic cells induced by enteric LPS.  相似文献   
23.
Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure–activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.  相似文献   
24.
Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.  相似文献   
25.
LPS from Rhizobium sin-1 (R. sin-1) can antagonize the production of tumor necrosis factor alpha (TNF-alpha) by E. coli LPS in human monocytic cells. Therefore these compounds provide interesting leads for the development of therapeutics for the prevention or treatment of septic shock. Detailed structure activity relationship studies have, however, been hampered by the propensity of these compounds to undergo beta-elimination to give biological inactive enone derivatives. To address this problem, we have chemically synthesized in a convergent manner a R. sin-1 lipid A derivative in which the beta-hydroxy ester at C-3 of the proximal sugar unit has been replaced by an ether linked moiety. As expected, this derivative exhibited a much-improved chemical stability. Furthermore, its ability to antagonize TNF-alpha production induced by enteric LPS was only slightly smaller than that of the parent ester modified derivative demonstrating that the ether-linked lipids affect biological activities only marginally. Furthermore, it has been shown for the first time that R. sin-1 LPS and the ether modified lipid A are also able to antagonize the production of the cytokine interferon-inducible protein 10, which arises from the TRIF-dependent pathway. The latter pathway was somewhat more potently inhibited than the MyD88-dependent pathway. Furthermore, it was observed that the natural LPS possesses much greater activity than the synthetic and isolated lipid As, which indicates that di-KDO moiety is important for optimal biological activity. It has also been found that isolated R. sin-1 LPS and lipid A agonize a mouse macrophage cell line to induce the production of TNF-alpha and interferon beta in a Toll-like receptor 4-dependent manner demonstrating species specific properties.  相似文献   
26.
Structural data on mammalian proteins are often difficult to obtain by conventional NMR approaches because of an inability to produce samples with uniform isotope labeling in bacterial expression hosts. Proteins with sparse isotope labels can be produced in eukaryotic hosts by using isotope-labeled forms of specific amino acids, but structural analysis then requires information from experiments other than nuclear Overhauser effects. One source of alternate structural information is distance-dependent perturbation of spin relaxation times by nitroxide spin-labeled analogs of natural protein ligands. Here, we introduce spin-labeled analogs of sugar nucleotide donors for sialyltransferases, specifically, CMP-TEMPO (CMP-4-O-[2,2,6,6-tetramethylpiperidine-1-oxyl]) and CMP-4carboxyTEMPO (CMP-4-O-[4-carboxy-2,2,6,6-tetramethylpiperidinine-1-oxyl]). An ability to identify resonances from active site residues and produce distance constraints is illustrated on a (15)N phenylalanine-labeled version of the structurally uncharacterized, alpha-2,6-linked sialyltransferase, ST6Gal I.  相似文献   
27.
The X-ray crystal structures of mannose trimming enzyme drosophila Golgi alpha-mannosidase II (dGMII) complexed with the inhibitors mannostatin A (1) and an N-benzyl analogue (2) have been determined. Molecular dynamics simulations and NMR studies have shown that the five-membered ring of mannostatin A is rather flexible occupying pseudorotational itineraries between 2T3 and 5E, and 2T3 and 4E. In the bound state, mannostatin A adopts a 2T1 twist envelope conformation, which is not significantly populated in solution. Possible conformations of the mannosyl oxacarbenium ion and an enzyme-linked intermediate have been compared to the conformation of mannostatin A in the cocrystal structure with dGMII. It has been found that mannostatin A best mimics the covalent linked mannosyl intermediate, which adopts a 1S5 skew boat conformation. The thiomethyl group, which is critical for high affinity, superimposes with the C-6 hydroxyl of the covalent linked intermediate. This functionality is able to make a number of additional polar and nonpolar interactions increasing the affinity for dGMII. Furthermore, the X-ray structures show that the environment surrounding the thiomethyl group of 1 is remarkably similar to the arrangements around the methionine residues in the protein. Collectively, our studies contradict the long held view that potent inhibitors of glycosidases must mimic an oxacarbenium ion like transition state.  相似文献   
28.
We present the results of classical dynamics calculations performed to study the photodissociation of water in crystalline and amorphous ice surfaces at a surface temperature of 10 K. A modified form of a recently developed potential model for the photodissociation of a water molecule in ice [S. Andersson et al., Chem. Phys. Lett. 408, 415 (2005)] is used. Dissociation in the top six monolayers is considered. Desorption of H(2)O has a low probability (less than 0.5% yield per absorbed photon) for both types of ice. The final outcome strongly depends on the original position of the photodissociated molecule. For molecules in the first bilayer of crystalline ice and the corresponding layers in amorphous ice, desorption of H atoms dominates. In the second bilayer H atom desorption, trapping of the H and OH fragments in the ice, and recombination of H and OH are of roughly equal importance. Deeper into the ice H atom desorption becomes less important and trapping and recombination dominate. Motion of the photofragments is somewhat more restricted in amorphous ice. The distribution of distances traveled by H atoms in the ice peaks at 6-7 Angstroms with a tail going to about 60 Angstroms for both types of ice. The mobility of OH radicals is low within the ice with most probable distances traveled of 2 and 1 Angstrom for crystalline and amorphous ices, respectively. OH is, however, quite mobile on top of the surface, where it has been found to travel more than 80 Angstroms. Simulated absorption spectra of crystalline ice, amorphous ice, and liquid water are found to be in very good agreement with the experiments. The outcomes of photodissociation in crystalline and amorphous ices are overall similar, but with some intriguing differences in detail. The probability of H atoms desorbing is 40% higher from amorphous than from crystalline ice and the kinetic-energy distribution of the H atoms is on average 30% hotter for amorphous ice. In contrast, the probability of desorption of OH radicals from crystalline ice is much higher than that from amorphous ice.  相似文献   
29.
The development of selectively protected monosaccharide building blocks that can reliably be glycosylated with a wide variety of acceptors is expected to make oligosaccharide synthesis a more routine operation. In particular, there is an urgent need for the development of modular building blocks that can readily be converted into glycosyl donors for glycosylations that give reliably high 1,2-cis-anomeric selectivity. We report here that 1,2-oxathiane ethers are stable under acidic, basic, and reductive conditions making it possible to conduct a wide range of protecting group manipulations and install selectively removable protecting groups such as levulinoyl (Lev) ester, fluorenylmethyloxy (Fmoc)- and allyloxy (Alloc)-carbonates, and 2-methyl naphthyl ethers (Nap). The 1,2-oxathiane ethers could easily be converted into bicyclic anomeric sulfonium ions by oxidization to sulfoxides and arylated with 1,3,5-trimethoxybenzene. The resulting sulfonium ions gave high 1,2-cis-anomeric selectivity when glycosylated with a wide variety of glycosyl acceptors including properly protected amino acids, primary and secondary sugar alcohols and partially protected thioglycosides. The selective protected 1,2-oxathianes were successfully employed in the preparation of a branched glucoside derived from a glycogen-like polysaccharide isolated form the fungus Pseudallescheria boydii , which is involved in fungal phagocytosis and activation of innate immune responses. The compound was assembled by a latent-active glycosylation strategy in which an oxathiane was employed as an acceptor in a glycosylation with a sulfoxide donor. The product of such a glycosylation was oxidized to a sulfoxide for a subsequent glycosylation. The use of Nap and Fmoc as temporary protecting groups made it possible to install branching points.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号