首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21970篇
  免费   3310篇
  国内免费   2186篇
化学   15112篇
晶体学   218篇
力学   1436篇
综合类   104篇
数学   2480篇
物理学   8116篇
  2024年   45篇
  2023年   409篇
  2022年   684篇
  2021年   745篇
  2020年   874篇
  2019年   785篇
  2018年   701篇
  2017年   644篇
  2016年   1086篇
  2015年   983篇
  2014年   1165篇
  2013年   1562篇
  2012年   1883篇
  2011年   1945篇
  2010年   1303篇
  2009年   1235篇
  2008年   1439篇
  2007年   1298篇
  2006年   1180篇
  2005年   1039篇
  2004年   755篇
  2003年   628篇
  2002年   588篇
  2001年   488篇
  2000年   389篇
  1999年   423篇
  1998年   327篇
  1997年   292篇
  1996年   337篇
  1995年   323篇
  1994年   259篇
  1993年   203篇
  1992年   201篇
  1991年   184篇
  1990年   166篇
  1989年   131篇
  1988年   107篇
  1987年   90篇
  1986年   68篇
  1985年   71篇
  1984年   70篇
  1983年   41篇
  1982年   49篇
  1981年   35篇
  1980年   31篇
  1979年   37篇
  1978年   28篇
  1976年   23篇
  1975年   15篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
A selective DNA sensing with zeptomole detection level is developed based on coulometric measurement of gold nanoparticle (AuNPs)-mediated electron transfer (ET) across a self-assembled monolayer on the gold electrode. After immobilization of a thiolated hairpin-structured DNA probe, an alkanethiol monolayer was self-assembled on the resultant electrode to block [Fe(CN)6 ]-3-/4in a solution from accessing the electrode. In the presence of DNA target, hybridization between the DNA probe and the DNA target breaks the stem duplex of DNA probe. Consequently, stem moiety at the 3′-end of the DNA probes was removed from the electrode surface and made available for hybridization with the reporter DNA-AuNPs conjugates (reporter DNA-AuNPs). The thiolated reporter DNA matches the stem moiety at the 3′-end of the DNA probe. AuNPs were then enlarged by immersing the electrode in a growth solution containing HAuCl 4 and H2O2 after the reporter DNA-AuNPs bound onto the electrode surface. The enlarged AuNPs on the electrode restored the ET between the electrode and the [Fe(CN)6]3 -/4- , as a result, amplified signals were achieved for DNA target detection using the coulometric measurement of Fe(CN)6 3- electro-reduction by prolonging the electrolysis time. The quantities of ET on the DNA sensor increased with the increase in DNA target concentration through a linear range of 3.0 fM to 1.0 pM when electrolysis time was set to 300 s, and the detection limit was 1.0 fM. Correspondingly, thousands of DNA (zeptomole) copies were detected in 10L samples. Furthermore, the DNA sensor showed excellent differentiation ability for single-base mismatch.  相似文献   
942.
A new star-shaped donor-acceptor molecule has been synthesized for application as the donor material in solution-processed bulk-heterojunction organic solar cells (OSCs). The molecule consists of a triphenylamine (TPA) unit as the core and a donor unit with three arms containing benzo[1,2,5]thiadiazole (BT) acceptor units and 5,5’’-dihexyl-2,2′:3′,2″-terthiophene (tTh) end groups. The molecule, denoted S(TPA-BT-tTh), exhibits a broad absorption band in the wavelength range 300-650 nm and high hole mobility of 1.1×10 -4 cm2 V -1 s 1 . An OSC device based on S(TPA-BT-tTh) as donor and [6,6]-phenyl C71 -butyric acid methyl ester (PC 70 BM) as the acceptor (1:3, w/w) exhibited a power conversion efficiency of 2.28% with a short circuit current density of 6.39 mA/cm2 under illumination of AM.1.5, 100 mW/cm2 .  相似文献   
943.
Polymer light-emitting electrochemical cells (PLECs) employ a thin layer of a luminescent conjugated polymer admixed with an ionic source and an ionic conductor for the in-situ formation of p-i-n junction and subsequent efficient injections of both electrons and holes.The junction formation enables the use of air-stable conductors as the cathode and a relatively thick emissive polymer layer that is more compatible with low-cost solution-based processes.This paper overviews the operation mechanism of the PLECs,the properties and drawbacks of the devices.The employment of crosslinkable ionic conductors to stabilize the p-i-n junction is reviewed.The resulting static junction electroluminesces light at high brightness,high efficiency,and prolonged lifetime.Silver paste and carbon nanotubes can be used as the cathode,thus,PLECs were fabricated by lamination.Using single wall carbon nanotubes coated elastic substrate as both anode and cathode,the PLECs can be made highly stretchable.  相似文献   
944.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   
945.
The introduction of RbF into the Mg(NH2)2–2 LiH system significantly decreased its (de‐)hydrogenation temperatures and enhanced its hydrogen‐storage kinetics. The Mg(NH2)2–2 LiH–0.08 RbF composite exhibits the optimal hydrogen‐storage properties as it could reversibly store approximately 4.76 wt % hydrogen through a two‐stage reaction with the onset temperatures of 80 °C for dehydrogenation and 55 °C for hydrogenation. At 130 °C, approximately 70 % of hydrogen was rapidly released from the 0.08 RbF‐doped sample within 180 min, and the fully dehydrogenated sample could absorb approximately 4.8 wt % of hydrogen at 120 °C. Structural analyses revealed that RbF reacted readily with LiH to convert to RbH and LiF owing to the favorable thermodynamics during ball‐milling. The newly generated RbH participated in the following dehydrogenation reaction, consequently resulting in a decrease in the reaction enthalpy change and activation energy.  相似文献   
946.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   
947.
A reactive template method was used to fabricate alginate‐based hydrogel microcapsules. The uniform and well‐dispersed hydrogel capsules have a high drug loading capacity. After they are coated by a folate‐linked lipid mixture on the surface, the capsules possess higher cell uptake efficiency by the molecule recognition between folate and the folate‐receptor overexpressed by the cancer cells. Moreover, in this bioconjugate, the lipid could remarkably reduce the release rate of hydrophilic doxorubicin from the hydrogel microcapsules and encapsulate the hydrophobic photosensitizer hypocrellin B. The biointerfaced capsules could be used as drug carriers for combined treatment against cancer cell proliferation in vitro; this was much more effective than chemotherapy or photodynamic therapy alone.  相似文献   
948.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   
949.
Direct conversion of fructose-based carbohydrates to 5-ethoxymethylfurfural (EMF) catalyzed by Lewis acid in ethanol was investigated. It was found that BF3·(Et)2O was favorable for 5-hydroxymethylfurfural (HMF) etherification to EMF. BF3·(Et)2O combination with AlCl3·6H2O with the molar ratio of 1 was an effective catalyst system for synthesis of EMF from fructose-based carbohydrates. 55.0%, 45.4% and 23.9% of EMF yields were obtained from fructose, inulin and sucrose under optimized conditions, respectively.  相似文献   
950.
A nitrite sensor based on Dawson vanodotungstophosphates α2-K7P2VW17O62·18H2O (P2W17V) and carbon nanotubes (CNTs) was prepared by electrostatic layer-by-layer self-assembly technique. The sensor {PEI/PSS/[PDDA/P2W17V-CNTs]n} was characterized by UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS). The electron transfer and sensing ability of this sensor were explored using cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) technology. The results show that the incorporation of CNTs and P2W17V into the composite film endowed the modified electrode with fast transfer rate and high electrocatalytic activity towards oxidation of nitrite. This nitrite sensor with 10 bilayers has a broad linear range of 5 × 10−8 to 2.13 × 10−3 M, a low detection limit of 0.0367 μM (S N−1 = 3), a high sensitivity of 0.35 mA mM−1 NO2, an excellent anti-interference property in the presence of other potential interfering species and a good stable. It was successfully employed for determination of nitrite in real towards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号