首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   15篇
  国内免费   7篇
化学   356篇
晶体学   1篇
力学   14篇
数学   71篇
物理学   41篇
  2022年   8篇
  2021年   8篇
  2020年   4篇
  2019年   12篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   10篇
  2014年   17篇
  2013年   27篇
  2012年   11篇
  2011年   28篇
  2010年   15篇
  2009年   20篇
  2008年   21篇
  2007年   30篇
  2006年   40篇
  2005年   34篇
  2004年   19篇
  2003年   12篇
  2002年   14篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   11篇
  1976年   2篇
  1975年   7篇
  1973年   2篇
  1972年   2篇
  1964年   1篇
  1960年   1篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
41.
Seven 2,4,6‐trisubstituted pyridine derivatives with N,N‐diethylaniline substituents at the 4‐position were synthesized, and their spectroscopic properties in the absence and presence of acid were studied. The spectral effects of protonation, molar absorptivities, pKa values, and the structural origins of the observed spectral behavior were ascertained. The pyridine nitrogen was found to be more basic than the diethylamino nitrogen atom. Protonation of the pyridine ring nitrogen is associated with the appearance of a red‐shifted intramolecular charge transfer peak in the UV‐visible spectra. Favorable color indicating properties result from electron‐donating substitution at the 2 and 6 positions of pyridine, which provide a greater absorptivity of the red‐shifted peak associated with protonation of the pyridine nitrogen. These findings will assist in the design and optimization of these compounds for ion‐indicating and pH‐sensing applications.  相似文献   
42.
Thyronines (THs) and thyronamines (TAMs) are two groups of endogenous iodine-containing signaling molecules whose representatives differ from each other only regarding the number and/or the position of the iodine atoms. Both groups of compounds are substrates of three deiodinase isozymes, which catalyze the sequential reductive removal of iodine from the respective precursor molecule. In this study, a novel analytical method applying liquid chromatography/tandem mass spectrometry (LC-MS/MS) was developed. This method permitted the unequivocal, simultaneous identification and quantification of all THs and TAMs in the same biological sample. Furthermore, a liquid-liquid extraction procedure permitting the concurrent isolation of all THs and TAMs from biological matrices, namely deiodinase (Dio) reaction mixtures, was established. Method validation experiments with extracted TH and TAM analytes demonstrated that the method was selective, devoid of matrix effects, sensitive, linear over a wide range of analyte concentrations and robust in terms of reproducible recoveries, process efficiencies as well as intra-assay and inter-assay stability parameters. The method was applied to study the deiodination reactions of iodinated THs catalyzed by the three deiodinase isozymes. With the HPLC protocol developed herein, sufficient chromatographic separation of all constitutional TH and TAM isomers was achieved. Accordingly, the position of each iodine atom removed from a TH substrate in a Dio-catalyzed reaction was backtracked unequivocally. While several established deiodination reactions were verified, two as yet unknown reactions, namely the phenolic ring deiodination of 3',5'-diiodothyronine (3',5'-T2) by Dio2 and the tyrosyl ring deiodination of 3-monoiodothyronine (3-T1) by Dio3, were newly identified.  相似文献   
43.
Monodisperse sub-10 nm Rh nanocubes were synthesized with high selectivity (>85%) by a seedless polyol method. The {100} faces of the Rh NCs were effectively stabilized by chemically adsorbed Br- ions from trimethyl(tetradecyl)ammonium bromide (TTAB). This simple one-step polyol route can be readily applied to the preparation of Pt and Pd nanocubes. Moreover, the organic molecules of PVP and TTAB that encapsulated the Rh nanocubes did not prevent catalytic activity for pyrrole hydrogenation and CO oxidation.  相似文献   
44.
45.
Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.  相似文献   
46.
We report X-ray emission spectra of Fe(III), Fe(II), and Co(II) spin-crossover compounds in their high-spin and low-spin forms. It is shown that all X-ray emission features are sensitive to the spin state. Variations of the Kbeta and the Kalpha emission line shapes, which are in agreement with theory, can be used as quantitative probes of the spin state; it is suggested that with appropriate reference experiments one can extract the spin momentum for a general case. Resonant X-ray emission spectra unveil details of the redistribution of electrons on the 3d levels associated with the spin-state change by revealing features at the X-ray absorption preedge not accessible through standard absorption measurements.  相似文献   
47.
Concise and protecting-group-free total syntheses of the marine oxylipins hybridalactone (1) and three members of the ecklonialactone family (2-4) were developed. They deliver these targets in optically pure form in 14 or 13 steps, respectively, in the longest linear sequence; five of these steps are metal-catalyzed and four others are metal-mediated. The route to either 1 or 2-4 diverges from the common building block 22, which is accessible in 7 steps from 2[5H]furanone by recourse to a rhodium-catalyzed asymmetric 1,4-addition reaction controlled by the carvone-derived diene ligand 35 and a ring-closing alkene metathesis (RCM) catalyzed by the ruthenium indenylidene complex 17 as the key operations. Alternatively, 22 can be made in 10 steps from furfural via a diastereoselective three-component coupling process. The further elaboration of 22 into hybridalactone as the structurally most complex target with seven contiguous chiral centers was based upon a sequence of cyclopropanation followed by a vanadium-catalyzed epoxidation, both of which were directed by the same free hydroxy group at C15. The macrocyclic scaffold was annulated to the headgroup by means of a ring-closing alkyne metathesis reaction (RCAM). In response to the unusually high propensity of the oxirane of the targeted oxylipins for ring opening, this transformation had to be performed with complexes of the type [(Ar(3)SiO)(4)Mo≡CPh][K·OEt(2)] (43), which represent a new generation of exceedingly tolerant yet remarkably efficient catalysts. Their ancillary triarylsilanolate ligands temper the Lewis acidity of the molybdenum center but are not sufficiently nucleophilic to engage in the opening of the fragile epoxide ring. A final semireduction of the cycloalkyne formed in the RCAM step to the required (Z)-alkene completed the total synthesis of (-)-1. The fact that the route from the common fragment 22 to the ecklonialactones could follow a similar logic showcased the flexibility inherent to the chosen approach.  相似文献   
48.
49.
50.
The lichen‐derived glycoconjugate gobienine A is structurally more complex than most glycolipids isolated from higher plants by virtue of the all‐cis substituted γ‐lactone substructure embedded into its macrocyclic frame. A concise entry into this very epimerization‐prone and hence challenging structural motif is presented, which relies on an enantioselective cyanohydrin formation, an intramolecular Blaise reaction, a palladium‐catalyzed alkoxycarbonylation, and a diastereoselective hydrogenation of the tetrasubstituted alkene in the resulting butenolide. This strategy, in combination with ring‐closing olefin metathesis for the formation of the macrocyclic perimeter, allowed the proposed structure of gobienine A ( 1 ) to be formed in high overall yield. The recorded spectral data show that the structure originally attributed to gobienine A is incorrect and that it is not the epimerization‐prone ester site on the butanolide ring that is the locus of misassignment; rather, the discrepancy must be more profound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号