首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16704篇
  免费   2868篇
  国内免费   2447篇
化学   12352篇
晶体学   299篇
力学   985篇
综合类   177篇
数学   1798篇
物理学   6408篇
  2024年   73篇
  2023年   329篇
  2022年   614篇
  2021年   620篇
  2020年   634篇
  2019年   704篇
  2018年   576篇
  2017年   563篇
  2016年   756篇
  2015年   790篇
  2014年   1006篇
  2013年   1329篇
  2012年   1521篇
  2011年   1670篇
  2010年   1156篇
  2009年   1130篇
  2008年   1147篇
  2007年   1104篇
  2006年   911篇
  2005年   805篇
  2004年   655篇
  2003年   509篇
  2002年   483篇
  2001年   428篇
  2000年   390篇
  1999年   296篇
  1998年   231篇
  1997年   186篇
  1996年   193篇
  1995年   158篇
  1994年   171篇
  1993年   126篇
  1992年   126篇
  1991年   105篇
  1990年   99篇
  1989年   86篇
  1988年   52篇
  1987年   46篇
  1986年   47篇
  1985年   43篇
  1984年   30篇
  1983年   19篇
  1982年   11篇
  1981年   14篇
  1980年   8篇
  1979年   14篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Diabetic mellitus is one of the leading causes of chronic wounds and remains a challenging issue to be resolved. Herein, a hydrogel with conformal tissue adhesivity, skin-like conductivity, robust mechanical characteristics, as well as active antibacterial function is developed. In this hydrogel, silver nanoparticles decorated polypyrrole nanotubes (AgPPy) and cobalt ions (Co2+) are introduced into an in situ polymerized poly(acrylic acid) (PAA) and branched poly(ethylenimine) (PEI) network (PPCA hydrogel). The PPCA hydrogel provides active antibacterial function through synergic effects from protonated PEI and AgPPy nanotubes, with a tissue-like mechanical property (≈16.8 ± 4.5 kPa) and skin-like electrical conductivity (≈0.048 S m−1). The tensile and shear adhesive strength (≈15.88 and ≈12.76 kPa, respectively) of the PPCA hydrogel is about two- to threefold better than that of fibrin glue. In vitro studies show the PPCA hydrogel is highly effective against both gram-positive and gram-negative bacteria. In vivo results demonstrate that the PPCA hydrogel promotes diabetic wounds with accelerated healing, with notable inflammatory reduction and prominent angiogenesis regeneration. These results suggest the PPCA hydrogel provide a promising approach to promote diabetic wound healing.  相似文献   
962.
The responsive color-changing bionic skin imitation of certain organisms such as chameleons has potential applications in the fields of chemical sensing and information transfer. Inspired by the cellular structure of the chameleon iridophores, a flexible and scalable fabrication strategy was proposed in the present study, which centers on the modular assembly of miniature color-changing pixel dots. The color-changing pixel dots were formed by self-assembling charged silica particles inside hydrogels and fabricated in bulk using microfluidic methods. The pixel dots were immobilized in hydrogels to encapsulate in a membrane structure similar to biological skin. With thermal stimulation, the bionic color-changing skin can change color from green to red and has an angle-independent color display with good environmental adaptability.  相似文献   
963.
Metal-organic frameworks (MOFs) are novel porous materials that have been extensively used in sensors, catalysis, gas storage and separation, and drug deliver owing to their adjustable pore size, large surface area and high porosity. Among diverse MOFs, UiO-66 can be a promising carrier for drug delivery due to high porosity and chemical stability. However, the adsorption mechanism of drugs in UiO-66 has not been identified and need a further investigation. Hence, we utilized molecular dynamic (MD) simulation to investigate the adsorption mechanism of UiO-66 as drug carriers. The MD simulation of UiO-66 exhibits the busulfan loading of 80 %, ibuprofen of 20 % and 5-fluorouracil of 30 %, respectively. We also demonstrated that the host-guest interaction between UiO-66 and drugs is dominated by the Van der Waals force. UiO-66 shows the highest affinity for busulfan compared with ibuprofen and 5-fluorouracil. In addition, it is certified the linear relation between the adsorption atoms and the interaction energy, which could help us to predict the interaction energy between drugs and UiO-66 by the contact atoms.  相似文献   
964.
Charge compensation on anionic redox reaction (ARR) has been promising to realize extra capacity beyond transition metal redox in battery cathodes. The practical development of ARR capacity has been hindered by high-valence oxygen instability, particularly at cathode surfaces. However, the direct probe of surface oxygen behavior has been challenging. Here, the electronic states of surface oxygen are investigated by combining mapping of resonant Auger electronic spectroscopy (mRAS) and ambient pressure X-ray photoelectron spectroscopy (APXPS) on a model LiCoO2 cathode. The mRAS verified that no high-valence oxygen can sustain at cathode surfaces, while APXPS proves that cathode electrolyte interphase (CEI) layer evolves and oxidizes upon oxygen gas contact. This work provides valuable insights into the high-valence oxygen degradation mode across the interface. Oxygen stabilization from surface architecture is proven a prerequisite to the practical development of ARR active cathodes.  相似文献   
965.
An overall carbon-neutral CO2 electroreduction requires enhanced conversion efficiency and intensified functionality of CO2-derived products to balance the carbon footprint from CO2 electroreduction against fixed CO2. A liquid Sn cathode is herein introduced into electrochemical reduction of CO2 in molten salts to fabricate core–shell Sn−C spheres (Sn@C). An in situ generated Li2SnO3/C directs a self-template formation of Sn@C. Benefitting from the accelerated reaction kinetics from the liquid Sn cathode and the core–shell structure of Sn@C, a CO2-fixation current efficiency higher than 84 % and a high reversible lithium-storage capacity of Sn@C are achieved. The versatility of this strategy is demonstrated by other low melting point metals, such as Zn and Bi. This process integrates energy-efficient CO2 conversion and template-free fabrication of value-added metal-carbon, achieving an overall carbon-neutral electrochemical reduction of CO2.  相似文献   
966.
Low-dimensional Ruddlesden-Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing γ-aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA)2MA3Pb4I13 (MA=CH3NH3+), leading to the charges localized in the van der Waals gap, thereby constructing “charged-bridge” for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA)2MA3Pb4I13 exciton binding energy as low as ≈73 meV. Benefiting from these merits, the resultant GABA-based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 °C for 500 h.  相似文献   
967.
It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18Fe12Al70, consisting of Ni2Al3 and Ni3Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18Fe12Al70 delivers an extremely low overpotential to trigger both HER (η100=188 mV) and OER (η100=345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2Al3 and Ni3Fe alloys on the HER process is confirmed based on theoretical calculation.  相似文献   
968.
The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.  相似文献   
969.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
970.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号