首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   57篇
  国内免费   83篇
化学   161篇
晶体学   5篇
力学   11篇
综合类   8篇
数学   31篇
物理学   189篇
  2023年   4篇
  2022年   13篇
  2021年   8篇
  2020年   6篇
  2019年   12篇
  2018年   9篇
  2017年   7篇
  2016年   13篇
  2015年   20篇
  2014年   18篇
  2013年   22篇
  2012年   26篇
  2011年   19篇
  2010年   25篇
  2009年   24篇
  2008年   28篇
  2007年   15篇
  2006年   14篇
  2005年   18篇
  2004年   16篇
  2003年   10篇
  2002年   13篇
  2001年   10篇
  2000年   16篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有405条查询结果,搜索用时 31 毫秒
151.
以固体碱为催化剂通过酰胺化反应构建了一种以酰胺为桥链、醇羟基为反应基团的反应型紫外线吸收剂,其结构经1H NMR, MS和FT-IR确证。然后通过对碱性催化剂、反应温度、反应溶剂、摩尔比和反应时间的优化进一步提高反应选择性,最终产品选择性可以达到92.5%,此时关键原料转化率为99.8%。   相似文献   
152.
利用荧光光谱法,紫外可见光谱法,红外光谱法,圆二色谱法和等温滴定量热法等手段,对抗癌药物盐酸阿霉素 (DOX) 与DNA的作用过程进行研究,测得了它们的结合常数Ka、结合位点数n、反应焓变ΔH、熵变ΔS及ΔG,且在结合过程中,B型DNA的螺旋结构在一定程度发生改变。荧光光谱的数据显示出显著的猝灭效应, 表明DNA是一个DOX荧光的很好的猝灭剂。红外光谱表明阳离子DOX+通过静电吸引与 DNA 的磷酸基团相互作用,且DOX的碳氢链通过疏水缔合与DNA作用。ITC测定了DOX和DNA相互作用的焓变和熵变,表明DOX的烃链和DNA的碱基之间的疏水性相互作用提供了结合的驱动力。  相似文献   
153.
The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high temperature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (GULP). The phonon dispersion curves and the corresponding density of state (PDOS) in this work are consistent with the experimental data and other theoretical results. The transverse optical (TO) and longitudinal optical (LO) mode splitting as well as heat capacity at constant volume Cv and entropy S versus pressure and temperature are also obtained.  相似文献   
154.
在室温下用308 MeV的Xe离子和853 MeV的Pb离子辐照Ni/SiO2样品, 用卢瑟福背散射和X射线衍射技术对样品进行了分析。 通过分析Ni/SiO2样品中元素成分分布和结构随离子辐照剂量和电子能损的变化, 探索了离子辐照在Ni/SiO2样品中引起的界面原子混合与结构相变现象。 实验结果显示, Xe和Pb离子辐照均能引起明显的Ni原子向SiO2基体的扩散并导致界面附近Ni, Si和O原子的混合。 实验观测到低剂量Xe离子辐照可产生NiSi2相, 而高剂量Xe离子辐照则导致了Ni3Si和NiO相的形成。 根据热峰模型, Ni原子的扩散和新相的形成可能由沿离子入射路径强电子激发引起的瞬间热峰过程驱动。Ni/SiO2 interface were irradiated at room temperature with 308 MeV Xe ions to 1×1012, 5×1012 Xe/cm2 and 853 MeV Pb ions to 5×1011 Pb/cm2, respectively. These samples were analyzed using Rutherford Backscattering Spectrometry (RBS) and X ray diffraction spectroscopy (XRD), from which the intermixing and phase change were investigated. The obtained results show that both Xe and Pb ions could induce diffusion of Ni atoms to SiO2 substrates and result in intermixing of Ni with SiO2. Furthermore, 1.0×1012 Xe/cm2 irradiation induced the formation of NiSi2 and 5.0×1012 Xe/cm2 irradiation created Ni3Si and NiO phases. The diffusion of Ni atoms and the formation of new phase may be driven by a transient thermal spike process induced by the intense electronic energy loss along the incident ion path.  相似文献   
155.
According to the theory given in the paper[1], the long time electrolysis experiment with titanium cathode in heavy water (D2O) were done for many times by using the open-loop multi-parameters electrolysis calorimetry system, which is established by us. The specialty is that the cathode is titanium rod and the anode is platinum wire. The early experiment result[3] is still repeated in our recent experiment. The obvious "excess heat" phenomenon can take place only when the electrolysis last more than ten days and amount of "excess heat" increased with the electrolysis time. The "excess heat" can also be obtained from the "boiling to dry" experiment. In the recent experiment, we obtain the results that the amount of "excess heat" is about 3.6 times the input energy, the "excess heat" power is 76.5 W, and the "excess heat" power density is 121.7 W/cm3. After the electrolysis, the crystal structure of the Ti cathode was measured with x-ray diffraction apparatus. We found that the crystal structure of Ti cathode was changed to face-centered cubic structure of TiD2 from its hexagonal structure. This result is in agreement with the Gou's theory mentioned in reference[1].  相似文献   
156.
以(1iR,1iiR,2iR,2iiR)-Ni, Nii-(1,3-亚苯基双(亚甲基))环己烷-1,2-二胺(HL)作为配体,设计并合成了7种双核铂配合物,并利用IR,1H NMR,13C NMR,ESI-MS和元素分析等进行了表征。通过MTT法测定目标双核铂配合物对人类HepG-2,A549,HCT-116和MCF-7四种癌细胞系的细胞毒性。结果表明,所有的化合物对HepG-2,A549和HCT-116细胞系均表现了良好的细胞毒活性,但对MCF-7细胞系均无活性。其中,以3-羟基环丁烷-1,1-二羧酸为离去基团的配合物P7对HepG-2和A549细胞系的活性优于卡铂,对HCT-116细胞系的活性接近于奥沙利铂。  相似文献   
157.
国家重大科技基础设施"强流重离子加速器装置"(High Intensity heavy-ion Accelerator Facility,HIAF)已由国家发改委批准立项并开始建设。建成之后,HIAF将为微观物质结构和重离子应用等研究提供很好的实验平台。HIAF的加速储存环(Booster Ring,BRing)设计可以加速最高动量为11.9 GeV/c的高流强质子束流。因此,HIAF-BRing将为GeV能区的核物理和强子物理研究带来新的机遇。另一方面,极化实验是研究微观物质及其相互作用的有力工具。我们提议启动相关物理和极化技术的预研工作,为在HIAF-BRing上开展自旋物理研究打下基础。The construction of the future scientific facility High Intensity heavy-ion Accelerator Facility (HIAF) in China has started. Once established, HIAF will provide excellent conditions for fundamental investigations on both matter structure and heavy-ion applications. The booster ring (BRing) of HIAF is designed to accelerate high-intensity protons with the maximum momentum of 11.9 GeV/c. Therefore it will bring new opportunities for the nuclear and hadron physics in the GeV region. Polarized experiments have been proved as a powerful tool in the explorations of the building blocks of matter. We propose to initiate a pre-investigation for the related physics and polarization techniques, which will lay the foundation of the spin physics at the HIAF-BRing.  相似文献   
158.
采用电子束(EB)对聚丙烯腈/聚氧化乙烯(PAN/PEO)凝胶电解质进行了剂量为13~260 kGy的辐照, 并对辐照改性的电解质组装的染料敏化太阳电池(DSSC)进行了性能测量。 结果表明, 改性后的DSSC的光电转化效率比改性前的高; 并且随EB辐照剂量的增加, DSSC效率先迅速增加(0~65 kGy), 然后缓慢减小(65~130 kGy)直至趋于一个平衡值(130~260 kGy)。 提升DSSC效率的最佳辐照剂量为65 kGy, 此时效率提高了约36%。 对比DSSC短路电流、 开路电压和填充因子随辐照剂量的变化, 发现DSSC效率的提高主要是由短路电流的提高引起的。 测量表明, 辐照改性后的DSSC时间稳定性得到了改善, 并且辐照剂量越高, 稳定性的改善越明显。 In this work, PAN/PEO (polyacrylonitrile/polyethylene oxide) based gel electrolyte was irradiated by electron beam (EB) with dose from 13 to 260 kGy. Then, DSSC (dye sensitized solar cell) was fabricated by the irradiated electrolyte and characterized. The results show that the efficiency of the DSSC fabricated by irradiated electrolyte is promoted comparing with DSSC fabricated by un irradiated electrolyte. And with irradiation dose increasing, the DSSC efficiency increases rapidly at first (0~65 kGy), then, drops down slowly (65~130 kGy), finally trends to a stable value (130~260 kGy). It indicates that there is an optimal irradiation dose, at which the promotion of DSSC efficiency is the highest, approximate 36%. Observed from the change of short circuit current, open circuit voltage and fill factor, short circuit current promotion by EB irradiation is found to be the main reason of DSSC performance promotion. The time stability measurement of the DSSC indicates that EB irradiation on PAN/PEO electrolyte reduces the loss of efficiency and the limiting effects become more apparent as the irradiation dose increases.  相似文献   
159.
以微孔纳米羟基磷灰石(HAP)为无机载体,甲基丙烯酸甲酯(MMA)和苯乙烯(St)为聚合单体,采用悬浮聚合法制备了HAP/P(MMA-St)复合微球。研究了影响球体粒度及其分布的主要因素和微球的吸附性能。结果表明,表面活性剂用量(质量分数,下同)为1‰、MMA用量为2%,HAP用量为30%,转速为300r/min时复合微球的合格球收率最高为86.4%。当微球中HAP的含量为36.07%时,HAP/P(MMA-St)微球对牛血清蛋白的最大吸附量Qe=18.70 mg/g,比未加HAP时,增加了4.65 mg/g。  相似文献   
160.
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first -principles method based on the plane-wave basis set. Analysis of band structures suggests that the rock-salt AIN has an indirect gap of 4.53 eV, which is in good agreement with other results. By investigating the effects of pressure on the energy gap, the different movement of conduction band at X point below and above 22.5 GPa is predicted. The optical properties including dielectric function, absorption, reflectivity, and refractive index are also calculated and analyzed. It is found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does the transparence affected by the pressure. Furthermore, the curve of optical spectrum will shift to high energy area (blue shift) with increasing pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号