首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   1篇
数学   1篇
物理学   33篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有35条查询结果,搜索用时 62 毫秒
31.
A mathematical model is proposed for the process of vacuum superplasticforming. The model exploits the fact that in most industrialapplications the sheet aspect ratio (thickness/sheet width)is small. After an initial consideration of some of the moregeneral properties and the literature of superplastic materials,the elastic/plastic deformation of an internally-inflated thin-walledcylinder is examined. Plates of arbitrary geometry are thenconsidered. A quasisteady model in which the sheet moves througha sequence of steady states is developed. Some simplified closed-formsolutions are examined, but for general cases a system of nonlinearpartial differential equations must be solved numerically. Anefficient and accurate semi-explicit numerical scheme is proposedand a simplified stability analysis is presented; the methodis then used to compute properties of superplastic vacuum mouldedsheets in a number of practically motivated cases.  相似文献   
32.
We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms.  相似文献   
33.
Single-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling. Several features of the single-particle spectral function are shown to compare favorably with experimental data for cuprate superconductors.  相似文献   
34.
A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus "projecting" the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field.  相似文献   
35.
We propose to engineer the atomic band structure in optical lattices in order to design a Fabry-Perot interferometer with large mode spacing and strong nonlinear coupling to be employed in atom optics. The use of an optical lattice allows for a significant reduction of the atomic effective mass, while the slow modulation of its parameters spatially confines the matter waves on a length scale of a few dozen optical wavelengths. As a consequence, the mode spacing in such a cavity would be as high as one-tenth of the recoil energy, allowing for a very efficient filter action, while the nonlinear coupling due to interatomic interactions could lead to bistability and limiting effects in the transmission of the atomic beam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号