首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465512篇
  免费   4214篇
  国内免费   1435篇
化学   248949篇
晶体学   7125篇
力学   20517篇
综合类   11篇
数学   54216篇
物理学   140343篇
  2020年   3558篇
  2019年   3995篇
  2018年   5141篇
  2017年   5059篇
  2016年   7660篇
  2015年   4894篇
  2014年   7537篇
  2013年   20127篇
  2012年   14821篇
  2011年   18227篇
  2010年   12559篇
  2009年   12212篇
  2008年   16683篇
  2007年   16967篇
  2006年   15694篇
  2005年   14426篇
  2004年   13081篇
  2003年   11725篇
  2002年   11678篇
  2001年   12959篇
  2000年   9898篇
  1999年   7744篇
  1998年   6682篇
  1997年   6653篇
  1996年   6271篇
  1995年   5823篇
  1994年   5827篇
  1993年   5645篇
  1992年   6278篇
  1991年   6268篇
  1990年   6029篇
  1989年   5937篇
  1988年   6074篇
  1987年   5878篇
  1986年   5609篇
  1985年   7533篇
  1984年   7974篇
  1983年   6634篇
  1982年   7021篇
  1981年   6884篇
  1980年   6762篇
  1979年   6762篇
  1978年   7175篇
  1977年   7054篇
  1976年   7249篇
  1975年   6616篇
  1974年   6769篇
  1973年   7206篇
  1972年   4781篇
  1971年   3867篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
62.
Micelles prepared from amphiphilic block copolymers in which a poly(styrene) segment is connected to a poly(ethylene oxide) block via a bis‐(2,2′:6′,2″‐terpyridine‐ruthenium) complex have been intensely studied. In most cases, the micelle populations were found to be strongly heterogeneous in size because of massive micelle/micelle aggregation. In the study reported in this article we tried to improve the homogeneity of the micelle population. The variant preparation procedure developed, which is described here, was used to prepare two “protomer”‐type micelles: PS20‐[Ru]‐PEO70 and PS20‐[Ru]‐PEO375. The dropwise addition of water to a solution of the compounds in dimethylformamide was replaced by the controlled addition of water by a syringe pump. The resulting micelles were characterized by sedimentation velocity and sedimentation equilibrium analyses in an analytical ultracentrifuge and by transmission electron microscopy of negatively stained samples. Sedimentation analysis showed virtually unimodal size distributions, in contrast to the findings on micelles prepared previously. PS20‐[Ru]‐PEO70 micelles were found to have an average molar mass of 318,000 g/mol (corresponding to 53 protomers per micelle, which is distinctly less than after micelle preparation by the standard method) and an average hydrodynamic diameter (dh) of 18 nm. For PS20‐[Ru]‐PEO375 micelles, the corresponding values were M = 603,000 g/mol (31 protomers per micelle) and dh = 34 nm. The latter particles were found to be identical to the “equilibrium” micelles prepared in pure water. Both micelle types had a very narrow molar mass distribution but a much broader distribution of s values and thus of hydrodynamic diameters. This indicates a conformational heterogeneity that is stable on the time scale of sedimentation velocity analysis. The findings from electron microscopy were in disagreement with those from the sedimentation analysis both in average micelle diameter and in the width of the distributions, apparently because of imperfections in the staining procedure. The preparation procedure described also may be useful in micelle formation from other types of protomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4458–4465, 2004  相似文献   
63.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004  相似文献   
64.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
65.
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004  相似文献   
66.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
67.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
68.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   
69.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
70.
The development during the last 15 years and the state-of-the-art in the analysis of bulk steroid hormone drugs and hormone-like structures and pharmaceutical formulations made thereof are summarized. Other steroids (sterols, bile acids, cardiac glycosides, vitamins D) as well as biological-clinical aspects and pharmacokinetic and metabolic studies are excluded from this review. The state-of-the-art is summarized based on comparisons of monographs in the latest editions of the European Pharmacopoeia, United States Pharmacopoeia and the Japanese Pharmacopoeia. This is followed by sections dealing with new developments in the methodology for the fields of spectroscopic and spectrophotometric, chromatographic, electrophoretic and hyphenated techniques as well electroanalytical methods. The review is terminated by two problem-oriented sections: examples on impurity and degradation profiling as well as enantiomeric analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号