首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8919篇
  免费   1760篇
  国内免费   1055篇
化学   6709篇
晶体学   95篇
力学   441篇
综合类   89篇
数学   847篇
物理学   3553篇
  2024年   41篇
  2023年   199篇
  2022年   349篇
  2021年   368篇
  2020年   429篇
  2019年   478篇
  2018年   385篇
  2017年   349篇
  2016年   515篇
  2015年   504篇
  2014年   585篇
  2013年   709篇
  2012年   890篇
  2011年   836篇
  2010年   621篇
  2009年   508篇
  2008年   585篇
  2007年   549篇
  2006年   445篇
  2005年   345篇
  2004年   249篇
  2003年   230篇
  2002年   278篇
  2001年   254篇
  2000年   141篇
  1999年   184篇
  1998年   122篇
  1997年   84篇
  1996年   76篇
  1995年   54篇
  1994年   59篇
  1993年   58篇
  1992年   50篇
  1991年   47篇
  1990年   40篇
  1989年   34篇
  1988年   22篇
  1987年   17篇
  1986年   12篇
  1985年   8篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1959年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Electrocatalytic carbon dioxide reduction holds great promise for reducing the atmospheric CO2 level and alleviating the energy crisis. High‐performance electrocatalysts are often required in order to lower the high overpotential and expedite the sluggish reaction kinetics of CO2 electroreduction. Copper is a promising candidate metal. However, it usually suffers from the issues of poor stability and low product selectivity. In this work, bimetallic Cu‐Bi is obtained by reducing the microspherical copper bismuthate (CuBi2O4) for selectively catalyzing the CO2 reduction to formate (HCOO). The bimetallic Cu‐Bi electrocatalyst exhibits high activity and selectivity with the Faradic efficiency over 90% in a wide potential window. A maximum Faradaic efficiency of ~95% is obtained at –0.93 V versus reversible hydrogen electrode. Furthermore, the catalyst shows high stability over 6 h with Faradaic efficiency of ~95%. This study provides an important clue in designing new functional materials for CO2 electroreduction with high activity and selectivity.  相似文献   
132.
本文报道了4种2-[(卤代苯胺(?))羰基]苯甲酸与Cu(Ⅱ)、Ni(Ⅱ)、Co(Ⅱ)配合物的制备,并通过元素分析、热重分析、红外光谱和电子光谱分析以及磁化率测定对它们进行了表征.结果证明,配合物是通过羧酸根上羟基氧原子和酰胺羰基上氧原子配位成键,除Cu(Ⅱ)配合物分子为平面正方形结构外.其余均为八面体结构,只是扭曲程度不同.并对它们的配位场参数进行了计算.  相似文献   
133.
A New Synthetic Route to 12-Oxo-1, 15-pentadecanlactam   总被引:1,自引:0,他引:1  
12-Oxo-1,15-pentadecanlactam 7 was synthesized from cyclododecanone with a totalyield of 36% in a seven-step reaction. The azide 5 to 12-nitro-1,15-pentadecanlactam 6 is the key step featured by direct ring expansion.  相似文献   
134.
Reaction mechanisms of the amide hydrolysis from the protonated, neutral, and deprotonated forms of N-(o-carboxybenzoyl)-l-amino acid have been investigated by use of the B3LYP density functional method. Our calculations reveal that in the amide hydrolysis the reaction barrier is significantly lower in solution than that in the gas phase, in contrast with the mechanism for imide formation in which the solvent has little influence on the reaction barrier. In the model reactions, the water molecules function both as a catalyst and as a reactant. The reaction mechanism starting from the neutral form of N-(o-carboxybenzoyl)-l-amino acid, which corresponds to pH 0-3, is concluded to be the most favored, and a concerted mechanism is more favorable than a stepwise mechanism. This conclusion is in agreement with experimental observations that the optimal pH range for amide hydrolysis of N-(o-carboxybenzoyl)-l-leucine is pH 0-3 where N-(o-carboxybenzoyl)-l-leucine is predominantly in its neutral form. We suggest that besides the acid-catalyzed mechanism the addition-elimination mechanism is likely to be an alternative choice for cleaving an amide bond. For the reaction mechanism initiated by protonation at the amidic oxygen (hydrogen ion concentration H(0) < -1), the reaction of the model compound with two water molecules lowers the transition barrier significantly compared with that involving a single water molecule.  相似文献   
135.
Beams of hyperthermal K atoms cross beams of the oriented haloforms CF(3)H, CCl(3)H, and CBr(3)H, and transfer of an electron mainly produces K(+) and the X(-) halide ion which are detected in coincidence. As expected, the steric asymmetry of CCl(3)H and CBr(3)H is very small and the halogen end is more reactive. However, even though there are three potentially reactive centers on each molecule, the F(-) ion yield in CF(3)H is strongly dependent on orientation. At energies close to the threshold for ion-pair formation ( approximately 5.5 eV), H-end attack is more reactive to form F(-). As the energy is increased, the more productive end switches, and F-end attack dominates the reactivity. In CF(3)H near threshold the electron is apparently transferred to the sigma(CH) antibonding orbital, and small signals are observed from electrons and CF(3)(-) ions, indicating "activation" of this orbital. In CCl(3)H and CBr(3)H the steric asymmetry is very small, and signals from free electrons and CX(3)(-) ions are barely detectable, indicating that the sigma(CH) antibonding orbital is not activated. The electron is apparently transferred to the sigma(CX) orbital which is believed to be the LUMO. At very low energies the proximity of the incipient ions probably determines whether salt molecules or ions are formed.  相似文献   
136.
We describe the two-dimensional (2D) assemblies of N,N'-dialkyl-substituted quinacridone derivatives on highly orientated pyrolytic graphite observed by scanning tunneling microscopy, and focus our discussion on whether the supramolecular organization can be modulated by the coadsorption of dicarboxylic acids. Our experiments have demonstrated that the quinacridone derivatives can form different 2D nanostructures when coadsorbed with dicarboxylic acids of different length at the liquid/graphite interface. Interestingly, N,N'-dihexadecyl-substituted quinacridone derivative alternately takes two different conformations in two columns for its coadsorption with pentadecanedioic acid and form a gridlike structure. It is shown that a cooperative effect of different interactions can be modulated by introducing guest molecule, leading to formation of different self-assembled nanostructures.  相似文献   
137.
Reaction-based fluorescent-probes have proven successful for the visualisation of biological species in various cellular processes. Unfortunately, in order to tailor the design of a fluorescent probe to a specific application (i.e. organelle targeting, material and theranostic applications) often requires extensive synthetic efforts and the synthetic screening of a range of fluorophores to match the required synthetic needs. In this work, we have identified Pinkment-OH as a unique “plug-and-play” synthetic platform that can be used to develop a range of ONOO responsive fluorescent probes for a variety of applications. These include theranostic-based applications and potential material-based/bioconjugation applications. The as prepared probes displayed an excellent sensitivity and selectivity for ONOO over other ROS. In vitro studies using HeLa cells and RAW 264.7 macrophages demonstrated their ability to detect exogenously and endogenously produced ONOO. Evaluation in an LPS-induced inflammation mouse model illustrated the ability to monitor ONOO production in acute inflammation. Lastly, theranostic-based probes enabled the simultaneous evaluation of indomethacin-based therapeutic effects combined with the visualisation of an inflammation biomarker in RAW 264.7 cells.

Pinkment, a resorufin based ONOO selective and sensitive ‘plug and play’ fluorescence-based platform for in vitro and in vivo use, enables facile functionalisation for various imaging and theranostic applications.  相似文献   
138.
The reactions of Pd(II) ions with starburst ligands 1,3,5-tris(di-2-pyridylamino)benzene (tdab) and 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazene (tdat) have been investigated. Complexes with the Pd:tdab (or tdat) ratio being 1:1 and 3:1 have been isolated and characterized. The structures of five new Pd(II) complexes containing the starburst ligands have been determined by X-ray diffraction analyses, which include chelate compounds [PdCl(2)(tdab)], 1, [(PdCl(2))(3)(tdab)], 2, [(Pd(OAc)(2))(3)(tdab)], 4, and [(Pd(OAc)(2))(3)(tdat)], 5, and a cyclometalated compound [Pd(OAc)(NCN-tdab)], 3. The Pd(II) ion in the 1:1 compound 1 is chelated by two pyridyl groups. Similarly, each Pd(II) center in the 3:1 compounds 2, 4, and 5 is chelated by two pyridyl groups. However, these three compounds display distinct structural features: 2 adopts a "bowl-shaped" structure, 4 has a "pinwheel"-like structure, and 5 has a "up-and-down" structure. Compounds 4 and 5 were examined in solution by variable-temperature (1)H NMR, which revealed that both compounds retain the "pinwheel" and the "up-and-down" structure, respectively. The observed structural preference by 4 and 5 is attributed to both electronic and steric factors.  相似文献   
139.
Two new triterpene lactones, polysperlactones A ( 2 ) and B ( 3 ), were isolated from the stems of Kadsura polysperma, together with the known compounds heteroclitalactone D ( 1 ) and schisanlactone E ( 4 ). Their structures were elucidated by spectroscopic methods, including 2D‐NMR and HR‐MS techniques. The configuration of 1 was confirmed by X‐ray analysis. Compounds 2 and 3 are members of a rare class of 3,4‐secolanostane metabolites with ring‐expanded or cyclized structures, respectively.  相似文献   
140.
Mesostructured silica SBA-15 materials with different structural parameters, such as pore size, pore volume, and wall thickness, etc., were prepared by varying the postsynthesis hydrothermal treatment temperature and adding inorganic salts. The hydrothermal stabilities of these materials in steam (100% water vapor) were systematically investigated using a variety of techniques including powder X-ray diffraction, transmission electron microscopy, nitrogen sorption, and (29)Si solid-state NMR. The effect of the pore size, microporosity or mesoporosity, and wall thickness on the stability was discussed. The results show that all of the SBA-15 materials have a good hydrothermal stability under steam of 600 degrees C for at least 24 h. N(2) sorption measurements show that the Brumauer-Emmett-Teller surface area of SBA-15 materials is decreased by about 62% after treatment under steam at 600 degrees C for 24 h. The materials with thicker walls and more micropores show relatively better hydrothermal stability in steam of 600 degrees C. Interestingly, we found that the microporosity of the mesostructured silica SBA-15 is a very important factor for the hydrothermal stability. To the materials with more micropores, the recombination of Si-O-Si bonds during the high-temperature steam treatment may not cause direct destruction to the wall structure. As a result, SBA-15 materials with more micropores show better stability in pure steam of 600 degrees C. Nevertheless, these materials are easily destroyed in steam of 800 degrees C for 6 h. Two methods to effectively improve the hydrothermal stability are introduced here: one is a high-temperature treatment, and another is a carbon-propping thermal treatment. Thermal treatment at 900 degrees C can enhance the polymerization degree of Si-O-Si bonds and effectively improve the hydrothermal stability of these SBA-15 materials in 800 degrees C steam for 12 h. But, this approach will cause very serious shrinkage of the mesopores, resulting in smaller pore diameter and low surface area. A carbon-propping thermal treating method was employed to enhance the polymerization of Si-O-Si bonds and minimize the serious shrinkage of mesopores at the same time. It was demonstrated to be an effective method that can greatly improve the hydrothermal stability of SBA-15 materials in 800 degrees C steam for 12 h. Furthermore, the SBA-15 materials obtained by using the carbon-propping method possess larger pores and higher surface area after the steam treatment at 800 degrees C compared to the materials from the direct thermal treatment method after the steam treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号