首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   11篇
化学   525篇
晶体学   2篇
力学   17篇
数学   4篇
物理学   229篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   16篇
  2014年   12篇
  2013年   44篇
  2012年   24篇
  2011年   73篇
  2010年   51篇
  2009年   44篇
  2008年   68篇
  2007年   63篇
  2006年   43篇
  2005年   38篇
  2004年   40篇
  2003年   17篇
  2002年   23篇
  2001年   21篇
  2000年   15篇
  1999年   3篇
  1998年   5篇
  1996年   4篇
  1995年   4篇
  1994年   8篇
  1993年   13篇
  1992年   10篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   8篇
  1981年   4篇
  1980年   7篇
  1979年   4篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   6篇
  1974年   2篇
  1973年   12篇
  1972年   3篇
  1971年   2篇
  1968年   3篇
  1933年   2篇
  1886年   2篇
排序方式: 共有777条查询结果,搜索用时 203 毫秒
21.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
22.
Infrared and Raman spectroscopy have been used to characterise synthetic hydrotalcites of formula Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O. The spectra have been used to assess the molecular assembly of the cations in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. The Raman spectra of the hydroxyl-stretching region enable bands to be assigned to the CuOH, ZnOH and AlOH units. It is proposed that in the hydrotalcites with minimal cationic replacement that the cations are arranged in a regular array. For the Cu(x)Zn(6 - x)Al2(OH)16(CO3) x 4H2O hydrotalcites, spectroscopic evidence suggests that 'islands' of cations are formed in the structure. In a similar fashion, the bands assigned to the interlayer water suggest that the water molecules are also in a regular well-structured arrangement. Bands are assigned to the hydroxyl stretching vibrations of water. Three types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface and (c) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite as it is hydrogen bonded to both the carbonate anion and the hydroxyl surface.  相似文献   
23.
A model for pseudoboehmite crystallite packing formed during the hydrolysis of trisecbutoxyaluminium is postulated. The model describes platelike crystallites of pseudoboehmite stacked in a sharing edges only configuration. With this type of stacking, the pore sizes detected are approximately equal to the crystallite sizes of the hydrolysates. The hydrolysates age via a dissolution re-precipitation reaction. This increases the size of the crystallite size of the pseudoboehmite formed, speeding peptization by allowing nitrate ions to enter pores and access the surfaces of the crystallites. This type of model also allows an explanation for the peptization kinetics of systems containing sec-butanol formed during the hydrolysis of trisecbutoxyaluminium.  相似文献   
24.
Summary A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of liebigite. Water is lost in two steps at 44 and 302°C. Two mass loss steps are observed for carbon dioxide evolution at 456 and 686°C. The product of the thermal decomposition was found to be a mixture of CaUO4 and Ca3UO6. The thermal decomposition of liebigite was followed by hot-stage Raman spectroscopy. Two Raman bands are observed in the 50°C spectrum at 3504 and 3318 cm-1 and shift to higher wavenumbers upon thermal treatment; no intensity remains in the bands above 300°C. Three bands assigned to the υ1 symmetric stretching modes of the (CO3)2- units are observed at 1094, 1087 and 1075 cm-1 in agreement with three structurally distinct (CO3)2- units. At 100°C, two bands are found at 1089 and 1078 cm-1. Thermogravimetric analysis is undertaken as dynamic experiment with a constant heating rate whereas the hot-stage Raman spectroscopic experiment occurs as a staged experiment. Hot stage Raman spectroscopy supports the changes in molecular structure of liebigite during the proposed stages of thermal decomposition as observed in the TG-MS experiment.  相似文献   
25.
The structural changes of synthetic and natural beidellites during dehydroxylation have been studied using infrared emission spectroscopy of the OH-stretching and bending regions. The OH-stretching region is characterized by two OH-stretching modes around 3600-3615 cm-1 and around 3650 cm-1. These bands strongly decrease in intensity upon dehydroxylation up to 600 degrees C for the natural beidellite and 700-750 degrees C for the synthetic ones. The differences in bandwidth, intensity, and dehydroxylation behavior are interpreted as due to differences in crystallinity with crystallinity increasing in the order natural beidellite < synthetic beidellite BSK3 < synthetic beidellite E498. Above 400 degrees C a new band attributed to silanol groups becomes visible in all samples due to transfer of the hydroxyls from the octahedral layer to the siloxane layer before they are lost. The broad band around 3300-3400 cm-1 is assigned to both H-bonding in H2O and H-bonding to Si-O-Al linkages. The presence of two different OH groups is also reflected in the OH-bending modes around 875-895 cm-1 and 915-925 cm-1 and in the OH-libration modes around 780 and 800-820 cm-1. These bands show a decrease in intensity upon heating and dehydroxylation of the clay structure. Here again the same order can be observed for the disappearance of the bands as for the OH-stretching region. Copyright 1999 Academic Press.  相似文献   
26.
Multi-anvil and laser-heated diamond anvil methods have been used to subject Ge and Si mixtures to pressures and temperatures of between 12 and 17 GPa and 1500–1800 K, respectively. Synchrotron angle dispersive X-ray diffraction, precession electron diffraction and chemical analysis using electron microscopy, reveal recovery at ambient pressure of hexagonal Ge−Si solid solutions (P63/mmc). Taken together, the multi-anvil and diamond anvil results reveal that hexagonal solid solutions can be prepared for all Ge−Si compositions. This hexagonal class of solid solutions constitutes a significant expansion of the bulk Ge−Si solid solution family, and is of interest for optoelectronic applications.  相似文献   
27.
A new high-yield two step synthesis of 7,8-dihydroisoquinolin-5(6H)-one (3) from 5,6,7,8-tetrahydroisoquinoline (1) is described.  相似文献   
28.
Abstract

The metal lithium is very important in industry, including lithium batteries. An important source of lithium besides continental brines is granitic pegmatites as in Australia. Lithiophilite is a lithium and manganese phosphate with chemical formula LiMnPO4 and forms a solid solution with triphylite, its Fe analog, and belongs to the triphylite group that includes karenwebberite, natrophilite, and sicklerite. The mineral lithiophilite was characterized by chemical analysis and spectroscopic techniques. The chemical is: Li1.01(Mn0.60, Fe0.41, Mg0.01, Ca0.01)(PO4)0.99 and corresponds to an intermediate member of the triphylite-lithiophilite series, with predominance of the lithiophilite member. The mineral lithiophilite is readily characterized by Raman and infrared spectroscopy.  相似文献   
29.
Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号