首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   5篇
  国内免费   1篇
化学   94篇
力学   7篇
数学   29篇
物理学   40篇
  2020年   4篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1995年   5篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1957年   2篇
  1954年   1篇
  1937年   1篇
  1936年   1篇
  1935年   2篇
  1932年   2篇
  1929年   1篇
  1928年   2篇
  1890年   1篇
  1886年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
21.
Using scanning tunneling microscopy (STM), molecular‐beam (MB) methods and time‐resolved infrared reflection absorption spectroscopy (TR‐IRAS), we investigate the mechanism of initial NOx uptake on a model nitrogen storage and reduction (NSR) catalyst. The model system is prepared by co‐deposition of Pd metal particles and Ba‐containing oxide particles onto an ordered alumina film on NiAl(110). We show that the metal–oxide interaction between the active noble metal particles and the NOx storage compound in NSR model catalysts plays an important role in the reaction mechanism. We suggest that strong interaction facilitates reverse spillover of activated oxygen species from the NOx storage compound to the metal. This process leads to partial oxidation of the metal nanoparticles and simultaneous stabilization of the surface nitrite intermediate.  相似文献   
22.
We predict cyclohexane–water distribution coefficients (log D 7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pK a) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol?1 for water and 0.8–0.9 kcal mol?1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pK a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2–3 for each solvent and two for the pK a) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0–2.1 for the RMSE with the first and 2.2–2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.  相似文献   
23.
Human blood group A and B glycosyltransferases (GTA, GTB) are retaining glycosyltransferases, requiring a catalytic mechanism that conserves the anomeric configuration of the hexopyranose moiety of the donor substrate (UDP-GalNAc, UDP-Gal). Previous studies have shown that GTA and GTB cycle through structurally distinct states during catalysis. Here, we link binding and release of substrates, substrate-analogs, and products to transitions between open, semi-closed, and closed states of the enzymes. Methyl TROSY based titration experiments in combination with zz-exchange experiments uncover dramatic changes of binding kinetics associated with allosteric interactions between donor-type and acceptor-type ligands. Taken together, this highlights how allosteric control of on- and off-rates correlates with conformational changes, driving catalysis to completion.  相似文献   
24.
An accurate control of fundamental frequency (F0) is required from singers. This control relies on auditory and kinesthetic feedback. However, a loud accompaniment may mask the auditory feedback, leaving the singers to rely on kinesthetic feedback. The object of the present study was to estimate the significance of auditory and kinesthetic feedback to pitch control in 28 students beginning a professional solo singing education. The singers sang an ascending and descending triad pattern covering their entire pitch range with and without masking noise in legato and staccato and in a slow and a fast tempo. F0 was measured by means of a computer program. The interval sizes between adjacent tones were determined and their departures from equally tempered tuning were calculated. The deviations from this tuning were used as a measure of the accuracy of intonation. Statistical analysis showed a significant effect of masking that amounted to a mean impairment of pitch accuracy by 14 cent across all subjects. Furthermore, significant effects were found of tempo as well as of the staccato/legato conditions. The results indicate that auditory feedback contributes significantly to singers' control of pitch.  相似文献   
25.
Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure. Since it was anticipated that losartan reaches the receptor site via membrane diffusion, the impact of losartan on model membranes has been investigated by small angle X-ray scattering. For this purpose 2-20 mol% losartan was incorporated into dimyristoyl-phosphatidylcholine (DMPC) and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers and into their binary mixtures with cholesterol in the concentration range of 0 to 40 mol%. Effects of losartan on single component bilayers are alike. Partitioning of losartan into the membranes confers a negative charge to the lipid bilayers that causes the formation of unilamellar vesicles and a reduction of the bilayer thickness by 3-4%. Analysis of the structural data resulted in an estimate for the partial area of losartan, A(Los) ≈ 40 ?(2). In the presence of cholesterol, differences between the effects of losartan on POPC and DMPC are striking. Membrane condensation by cholesterol is retarded by losartan in POPC. This contrasts with DMPC, where an increase of the cholesterol content shifts the partitioning equilibrium of losartan towards the aqueous phase, such that losartan gets depleted from the bilayers from 20 mol% cholesterol onwards. This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan's action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts.  相似文献   
26.
In this paper we present the results of morphological, mechanical and electrical investigation of the properties of prepared graphene flakes and graphene-based quantum Hall devices. AFM imaging allowed us to identify the local imperfections and unintentional modifications of the graphene sheets which had caused severe deterioration of the device electrical performance. Utilizing the NanoSwing imaging method, based on the time-resolved tapping mode, we could observe non-homogeneities of the structural and mechanical properties. We also diagnosed the device under working conditions by Kelvin probe microscopy and detected its local electric field distribution.  相似文献   
27.
Solution‐, melt‐, and co‐axial electrospinning are well‐known methods for producing nano‐ and microfibers. The electrospinning of colloids (or colloid‐electrospinning) is a new field that offers the possibility to elaborate multicompartment nanomaterials. However, the presence of colloids in the electrospinning feed further complicates theoretical predictions in a system that is dependent on chemical, physical, and process parameters. Herein, we give a summary of recent important results and discuss the perspectives of electrospinning of colloids for the synthesis and characterization of multicompartment fibers.  相似文献   
28.
The construction of appropriate jet space coordinates for calculating local BRST cohomology groups is discussed. The relation to tensor calculus is briefly reviewed too.  相似文献   
29.
Friedemann Leibfritz 《PAMM》2005,5(1):751-752
We consider the solution of the static output feedback (SOF) ℋ︁ control design problem. In particular, we solve the corresponding non–convex and nonlinear semidefinite program (NSDP), the so–called ℋ︁–NSDP, by a suitable optimization solver. Finally, we demonstrate the behavior of the solver on the COMPleibbenchmark collection. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
30.
Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号