首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
物理学   26篇
  2017年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
11.
12.
We calculate the inelastic light scattering from x rays, which allows the photon to transfer both energy and momentum to the strongly correlated charge excitations. We find that the charge-transfer peak and the low-energy peak both broaden and disperse through the Brillouin zone similar to what is seen in experiments in materials such as Ca2CuO2Cl2.  相似文献   
13.
A class of sum rules for inelastic light scattering is developed. We show that the first moment of the nonresonant response provides information about the potential energy in strongly correlated systems. The polarization dependence of the sum rules provides information about the electronic excitations in different regions of the Brillouin zone. We determine the sum rule for the Falicov-Kimball model, which possesses a metal-insulator transition, and compare our results to the light scattering experiments in SmB(6).  相似文献   
14.
15.
The many-body formalism for dynamical mean-field theory is extended to treat nonequilibrium problems. We illustrate how the formalism works by examining the transient decay of the oscillating current that is driven by a large electric field turned on at time t=0. We show how the Bloch oscillations are quenched by the electron-electron interactions, and how their character changes dramatically for a Mott insulator.  相似文献   
16.
A systematic study of optical and transport properties of the Hubbard model, based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one) and also compare qualitatively with many anomalous transport features of the high-T c cuprates. This anomalous behaviour of the normal-state properties is traced to a ‘collective single-band Kondo effect’, in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.  相似文献   
17.
We calculate the restricted phase diagram for the Falicov–Kimball model on a two-dimensional square lattice. We consider the limit where the average conduction electron density is equal to the average localized electron density, which is the limit related to the S z =0 states of the Hubbard model. After considering over 20,000 different candidate phases (with a unit cell of 16 sites or less) and their thermodynamic mixtures, we find only about 100 stable phases in the ground-state phase diagram, where the ground state is usually the phase separated mixture of two or three stable phases, that often have different electron densities than in the Maxwell-constructed mixture. We analyze these phases to describe where stripe phases occur and relate these discoveries (were appropriate) to the physics behind stripe formation in the Hubbard model.  相似文献   
18.
19.
20.
Regular pattern formation is ubiquitous in nature; it occurs in biological, physical, and materials science systems. Here we propose a set of experiments with ultracold atoms that show how to examine different types of pattern formation. In particular, we show how one can see the analog of labyrinthine patterns (so-called quantum emulsions) in mixtures of light and heavy atoms (that tend to phase separate) by tuning the trap potential and we show how complex geometrically ordered patterns emerge (when the mixtures do not phase separate), which could be employed for low-temperature thermometry. The complex physical mechanisms for the pattern formation at zero temperature are understood within a theoretical analysis called the local density approximation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号