首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   15篇
化学   321篇
晶体学   1篇
力学   14篇
数学   59篇
物理学   64篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   15篇
  2015年   12篇
  2014年   25篇
  2013年   23篇
  2012年   32篇
  2011年   26篇
  2010年   18篇
  2009年   20篇
  2008年   34篇
  2007年   33篇
  2006年   29篇
  2005年   41篇
  2004年   27篇
  2003年   20篇
  2002年   22篇
  2001年   8篇
  2000年   2篇
  1999年   8篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1972年   1篇
排序方式: 共有459条查询结果,搜索用时 31 毫秒
431.
We report on catalysis by a fuel‐induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid), which is itself decomposed by the machine and/or the presence of additional base. The ON‐state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON‐state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, with each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components.  相似文献   
432.
433.
Edvardsson M  Rodahl M  Höök F 《The Analyst》2006,131(7):822-828
We report measurements with the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, with focus on how the shear oscillation amplitude of the sensor surface influences biorecognition binding events. Technically, this is made as reported recently (M. Edvardsson, M. Rodahl, B. Kasemo, F. H??k, Anal. Chem., 2005, 77(15), 4918-4926) by operating the QCM in dual frequency mode; one harmonic (n = n1) is utilized for continuous excitation of the QCM-D sensor at resonance at variable driving amplitudes (1-10 V), while the second harmonic (n not equaln(1)) is used for combined f and D measurements. By using one harmonic as a "probe" and the other one as an "actuator", elevated amplitudes can be used to perturb - or activate - binding reactions in a controlled way, while simultaneously maintaining the possibility of probing the adsorption and/or desorption events in a non-perturbative manner using combined f and D measurements. In this work we investigate the influence of oscillation amplitude variations on the binding of NeutrAvidin-modified polystyrene beads (slashed circle approximately 200 nm) to a planar biotin-modified lipid bilayer supported on an SiO2-modified QCM-D sensor. These results are further compared with data on an identical system, except that the NeutrAvidin-biotin recognition was replaced by fully complementary DNA hybridization. Supported by micrographs of the binding pattern, the results demonstrate that there exists, for both systems, a unique critical oscillation amplitude, A(c), below which binding is unaffected by the oscillation, and above which binding is efficiently prevented. Associated with A(c), there is a critical crystal radius, r(c), defining the central part of the crystal where binding is prevented. From QCM-D data, A(c) for the present system was estimated to be approximately 6.5 nm, yielding a value of r(c) of approximately 3 mm--the latter number was nicely confirmed by fluorescent- and dark-field micrographs of the crystal. Furthermore, the fact that A(c) is observed to be identical for the two types of biorecognition reactions suggests that it is neither the strength, nor the number of contact points, that determine the amplitude at which binding is prevented. Rather, particle size seems to be the determining parameter.  相似文献   
434.
The ground state structure of retinal has been investigated. We found that DFT and CASSCF produce different results for the bond length alternation in a model system of retinal. Quantum mechanics/molecular mechanics calculations including the closest surrounding amino acids have been performed, using DFT and CASSCF to calculate the structure of retinal in the protein cavity. The planarity of the retinal molecule is affected by the surrounding protein. DFT and CASSCF produce different twist angles. The difference between CASSCF and DFT appears to be related to the positively charged nitrogen of the Schiff base, which leads to different pi-bond orders produced by the two methods.  相似文献   
435.
Methods and compositions for producing lipid-based cubic phase nanoparticles were first discovered in the 1990s. Since then a number of studies have been presented, but little is known about how to control key properties such as particle size, morphology, and stability of cubic phase dispersions. In the present work we give examples of how these properties can be tuned by composition and processing conditions. Importantly we show that stable particle dispersions with consistent size and structure can be produced by a simple processing scheme comprising a homogenization and heat treatment step.  相似文献   
436.
We report a molecular dynamics simulation of a simple monatomic glass-forming liquid. It is shown that transition to deeper minima in the energy landscape under supercooling results in the formation of icosahedrally structured domains with distinctly slow diffusion which grow with cooling in a low-dimensional manner and percolate around T(c), the critical temperature of the mode-coupling theory. Simultaneously, a sharp slowing down of the structural relaxation relative to diffusion is observed. It is concluded that this effect cannot be accounted for by the spatial variation in atomic mobility. The low-dimensional clustering is discussed as a possible mechanism of fragility.  相似文献   
437.
We demonstrate that intense laser pulses can be used to directly control the spins in ferrimagnetic garnet films. Through an ultrafast and nonthermal photomagnetic effect the magnetocrystalline anisotropy is modified to create a new long-lived equilibrium orientation for the magnetization. Simultaneously, the magnetization is rotated into this new state by precession in a strong transient optically generated magnetic field. All take place within the 100 fs duration of a single laser pulse, thus demonstrating the feasibility of photomagnetic switching on the femtosecond time scale.  相似文献   
438.
A continued study of the recently discovered diazotizative allylation (DiazAll) reaction of aniline derivatives is reported. Several allyl reagents, commonly used in radical allylation reactions, were evaluated, and some of these reagents resulted in allylation when used in the DiazAll reaction. The best result was obtained with allyl bromide. Substituted allylic bromides gave the corresponding allyl aromatic compounds in poor to excellent yields. In comparison with an established method for aromatic allylation, the DiazAll reaction performed well and was superior when a more complex allylic bromide was used. Finally, a new allylation-bromocyclization reaction was demonstrated and used in the synthesis of a known inhibitor of phenylethanolamine N-methyltransferase (PNMT), an enzyme involved in the biosynthesis of adrenaline.  相似文献   
439.
A method for ultrasonic synthetic aperture imaging using finite-sized transducers is introduced that is based on a compact, linear, discrete model of the ultrasonic measurement system developed using matrix formalism. Using this model a time-domain algorithm for deconvolution of the transducer's spatial impulse responses (SIRs) is developed that is based on a minimum mean square error (MMSE) criterion. The algorithm takes the form of a spatiotemporal filter that compensates for the SIRs associated with a finite-sized transducer at every point of the processed image. A major advantage of the proposed method is that it can be used for any transducer, provided that its associated SIRs are known. This is in contrast to the synthetic aperture focusing technique (SAFT), which treats the transducer as a point source. The performance of the method is evaluated with simulations and experiments, performed in water using a linear phased array. The results obtained using the proposed method are compared to those obtained with a classical time-domain SAFT algorithm. For a finite aperture source, it is clearly shown that the resolution obtained using the proposed method is superior to that obtained using the SAFT algorithm.  相似文献   
440.
The observed response in mass spectrometry utilizing electrospray as a sample introduction technique can be affected by a number of factors. In this study a series of two-electrolyte systems was investigated and the mass spectrometric responses were modeled by the use of droplet surface partitioning coefficients and instrumental response factors according to a recently reported method (Sjöberg et al., Anal. Chem. 2001, 73, 23–28). The partitioning coefficient and the instrumental response factor were found to be affected by the chosen experimental conditions. Experimental parameters that were investigated include spray position relative to the orifice, spray potential, nebulizer and curtain gas flow rates, ionic strength, and organic content of the sprayed solution. The time history of the generated droplets turned out to be of importance to both the partitioning coefficients and the instrumental response factor. For example, a general increase in the surface partitioning coefficients for the tetrapentylammonium ion was initially observed when the spray was aiming closer to the sampling orifice. Furthermore, it was shown with a small amount of deuterium labeled electrolyte that the total ionic strength and not just the electrolyte concentration influence the instrumental response factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号