首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   15篇
化学   317篇
晶体学   1篇
力学   14篇
数学   59篇
物理学   65篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   15篇
  2015年   12篇
  2014年   25篇
  2013年   24篇
  2012年   32篇
  2011年   25篇
  2010年   17篇
  2009年   19篇
  2008年   34篇
  2007年   33篇
  2006年   29篇
  2005年   41篇
  2004年   27篇
  2003年   20篇
  2002年   21篇
  2001年   8篇
  2000年   2篇
  1999年   6篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有456条查询结果,搜索用时 15 毫秒
421.
Forces have been measured between silica surfaces with adsorbed surfactants by means of a bimorph surface force apparatus. The surfactants used are the cationic surfactant tetradecyltrimethylammonium bromide (TTAB) and the nonionic surfactant hexakis(ethylene glycol) mono-n-tetradecyl ether (C(14)E(6)) as well as mixtures of these two surfactants. The measurements were made at elevated pH, and the effect of salt was studied. At high pH the glass surface is highly charged, which increases the adsorption of TTAB. Despite the low adsorption generally seen for nonionic surfactants on silica at high pH, addition of C(14)E(6) has a considerable effect on the surface forces between two glass surfaces in a TTAB solution. The barrier force is hardly affected, but the adhesion is reduced remarkably. Also, addition of salt decreases the adhesion, but increases the barrier force. In the presence of salt, addition of C(14)E(6) also increases the thickness of the adsorbed layer. The force barrier height is also shown to be related to literature values for surface pressure data in these systems.  相似文献   
422.
Quartz crystal microbalance with dissipation (QCM-D) measurements were used to investigate the adsorption of human fibrinogen, human serum albumin, bovine hemoglobin, horse heart cytochrome c, human immunoglobulin (hIgG), and 10% fetal bovine serum on supported bilayers of egg-phosphatidylcholine (eggPC) lipids. For comparison the adsorption of fibrinogen and hIgG to eggPC bilayers was also studied with surface plasmon resonance (SPR). The supported bilayers were formed in situ by vesicle adhesion and spontaneous fusion onto a SiO(2) surface. The supported lipid bilayer is highly protein resistant: The irreversible adsorption measured with the QCM-D technique was below the detection level, while reversible protein adsorption was detected for all the proteins in the range 0.3-4% of the saturation coverage on a hydrophobic thiol monolayer on gold. The adsorbed amounts were slightly higher for the SPR measurements. Possible mechanisms for the protein resistance of eggPC bilayers are briefly discussed.  相似文献   
423.
424.
Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pili of uropathogenic E. coli, is studied mostly at the level of cell–cell interactions and thereby reflects the averaged behavior of multiple pili. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the same time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that are of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single‐molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force‐measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Mi‐ nireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.  相似文献   
425.
426.
Electron transfer in the cations of bis(hydrazines), bridged by six different π‐systems (compounds 1–6) is studied using ab initio and density functional theory (DFT) methods. Due to ionization from an antibonding combination of the lone‐pair orbitals of the nitrogens in one of the hydrazine units, conjugation is introduced in the N? N bond of that unit. This leads to a shortening of the N? N bond distance and an increase of the planarity around the nitrogens. Due to steric hindrance, this causes an increase of the angle, called φ, between the lone‐pair orbital on the nitrogen attached to the bridge and the p‐orbital on the adjacent bridge carbon for the ionized unit in the charge localized, relaxed state of the molecule. This angle controls the magnitude of the electronic coupling. In the fully delocalized symmetric transition state of the ion, however, this angle is low for both units, due to the fact that the conjugation introduced at the ionized hydrazine unit is now shared between both units. An extended π‐system is formed including the orbitals of the hydrazine units and the bridge, which leads to a large electronic coupling. The electronic coupling derived by optical methods, corresponding to the structure of the relaxed, asymmetric cation with a large φ for the ionized unit, appears to be much smaller. We believe this is due to an approximate cosine dependence on φ of the coupling. The calculations carried out support these conclusions. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 655–664, 2001  相似文献   
427.
Credit risk optimization with Conditional Value-at-Risk criterion   总被引:27,自引:0,他引:27  
This paper examines a new approach for credit risk optimization. The model is based on the Conditional Value-at-Risk (CVaR) risk measure, the expected loss exceeding Value-at-Risk. CVaR is also known as Mean Excess, Mean Shortfall, or Tail VaR. This model can simultaneously adjust all positions in a portfolio of financial instruments in order to minimize CVaR subject to trading and return constraints. The credit risk distribution is generated by Monte Carlo simulations and the optimization problem is solved effectively by linear programming. The algorithm is very efficient; it can handle hundreds of instruments and thousands of scenarios in reasonable computer time. The approach is demonstrated with a portfolio of emerging market bonds. Received: November 1, 1999 / Accepted: October 1, 2000?Published online December 15, 2000  相似文献   
428.
We report on catalysis by a fuel‐induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid), which is itself decomposed by the machine and/or the presence of additional base. The ON‐state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON‐state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, with each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components.  相似文献   
429.
430.
Edvardsson M  Rodahl M  Höök F 《The Analyst》2006,131(7):822-828
We report measurements with the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, with focus on how the shear oscillation amplitude of the sensor surface influences biorecognition binding events. Technically, this is made as reported recently (M. Edvardsson, M. Rodahl, B. Kasemo, F. H??k, Anal. Chem., 2005, 77(15), 4918-4926) by operating the QCM in dual frequency mode; one harmonic (n = n1) is utilized for continuous excitation of the QCM-D sensor at resonance at variable driving amplitudes (1-10 V), while the second harmonic (n not equaln(1)) is used for combined f and D measurements. By using one harmonic as a "probe" and the other one as an "actuator", elevated amplitudes can be used to perturb - or activate - binding reactions in a controlled way, while simultaneously maintaining the possibility of probing the adsorption and/or desorption events in a non-perturbative manner using combined f and D measurements. In this work we investigate the influence of oscillation amplitude variations on the binding of NeutrAvidin-modified polystyrene beads (slashed circle approximately 200 nm) to a planar biotin-modified lipid bilayer supported on an SiO2-modified QCM-D sensor. These results are further compared with data on an identical system, except that the NeutrAvidin-biotin recognition was replaced by fully complementary DNA hybridization. Supported by micrographs of the binding pattern, the results demonstrate that there exists, for both systems, a unique critical oscillation amplitude, A(c), below which binding is unaffected by the oscillation, and above which binding is efficiently prevented. Associated with A(c), there is a critical crystal radius, r(c), defining the central part of the crystal where binding is prevented. From QCM-D data, A(c) for the present system was estimated to be approximately 6.5 nm, yielding a value of r(c) of approximately 3 mm--the latter number was nicely confirmed by fluorescent- and dark-field micrographs of the crystal. Furthermore, the fact that A(c) is observed to be identical for the two types of biorecognition reactions suggests that it is neither the strength, nor the number of contact points, that determine the amplitude at which binding is prevented. Rather, particle size seems to be the determining parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号