首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2047篇
  免费   61篇
  国内免费   14篇
化学   1481篇
晶体学   10篇
力学   62篇
数学   295篇
物理学   274篇
  2022年   18篇
  2021年   29篇
  2020年   22篇
  2019年   47篇
  2018年   19篇
  2017年   13篇
  2016年   39篇
  2015年   44篇
  2014年   45篇
  2013年   113篇
  2012年   118篇
  2011年   115篇
  2010年   58篇
  2009年   51篇
  2008年   117篇
  2007年   109篇
  2006年   107篇
  2005年   101篇
  2004年   83篇
  2003年   80篇
  2002年   69篇
  2001年   28篇
  1999年   28篇
  1998年   19篇
  1997年   22篇
  1996年   36篇
  1995年   26篇
  1994年   17篇
  1993年   16篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   15篇
  1988年   15篇
  1987年   15篇
  1985年   25篇
  1984年   29篇
  1983年   22篇
  1982年   32篇
  1981年   20篇
  1980年   13篇
  1979年   24篇
  1978年   29篇
  1977年   25篇
  1976年   22篇
  1975年   19篇
  1974年   24篇
  1973年   21篇
  1972年   12篇
  1966年   12篇
排序方式: 共有2122条查询结果,搜索用时 0 毫秒
131.
Hydrogels are attractive materials for generating 4D shapes due to their ability to undergo pronounced volume changes in response to several stimuli, including light. We previously reported shape-changing hydrogels actuated by long-wave UV and visible light in the presence of live cells using poly(ethylene glycol) macromers incorporating different photodegradable ortho-nitrobenzyl (o-NB) groups. In this comprehensive study, we determine the effect of chemical structure of different o-NB macromers (which influences molar absorptivity and rate constant of degradation), composition (macromer weight percent), fabrication design (initial gel thickness) and environment (ionic strength of solution) on light-induced hydrogel folding. We demonstrate successful photopolymerization and subsequent photodegradation of hydrogels, multistep folding, and live-cell encapsulation. This hydrogel system may be useful as new tool in stem cell differentiation and developmental biology research, facilitating the in vitro investigation of processes that are sensitive to both physical and temporal stimuli.  相似文献   
132.
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.  相似文献   
133.

A facile procedure, involving one-pot synthesis of CeVO4/BiVO4 and in-situ reduction of graphene oxide (GO), has been used to prepare CeVO4/BiVO4/rGO nanocomposites. Different ratios of the CeVO4–BiVO4 were prepared to afford composites represented as CBVG3, CBVG5, and CBVG7. The ternary nanocomposite materials were characterized by using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), photoluminescence and UV–vis spectroscopic techniques. Photocatalytic efficiency of the as-prepared ternary nanocomposites was investigated through the photo degradation of methyl orange under a visible light irradiation at 470 nm. The photocatalytic performance was enhanced by loading the CeVO4/BiVO4 nanoparticles on reduced graphene oxide (rGO), given MO degradation rate of 57, 65, 80, and 90% for BVG, CBVG3, CBVG5, and CBVG7, respectively after exposure to visible light for 120 min. Effects of experimental process parameters including initial dye concentration, catalysts loading and effect of different modification regimes were studied using CBVG7, which exhibited the highest efficiency. The improvement in the photocatalytic efficiency may be attributed to increased surface area of the nanocomposites, enhanced light absorption capacity and improved charge separation. The study showed a one-pot synthesis route to prepare promising CeVO4/BiVO4/GO nanocomposites for the photo-enhanced degradation of dye contaminants.

  相似文献   
134.
135.
136.
137.
Upon exposure to UV light, the disubstituted dibenzobarrelene derivative 1a turns green in the solid phase and reverts back to its original pale-yellow color within several hours in the dark. The lifetime of the colored species in degassed benzene at room temperature is 37 +/- 2 s (Ea for decoloration is 14.5 +/- 0.7 kcal mol-1 and log A is 8.92 +/- 0.5 s-1) and highly sensitive to molecular oxygen; the Stern-Volmer quenching constant is 6.9 +/- 0.2 x 108 M-1 s-1. Similarly, the disubstituted dibenzobarrelenes 1b and 1c exhibited pink coloration when exposed to UV light in the solid phase. On the basis of combined experimental and theoretical evidence, it is proposed that upon photoexcitation the excited singlet state of 1a undergoes rapid intersystem crossing to its triplet state, followed by intramolecular delta-H abstraction, to yield the triplet biradical intermediate (3)2. Upon prolonged irradiation, 2 undergoes cyclization to the alcohol 3, which affords the enone 4 as the final photoproduct. The delta-H abstraction on the triplet-state potential energy surface, calculated at the B3LYP/6-31G* level of density functional theory (DFT), has an activation energy of 18.5 kcal/mol. Further, the absorption spectrum of the triplet biradical (3)2, obtained from time-dependent DFT calculations, displays an intense absorption maximum at 670 nm, which is in good agreement with the observed absorption peak at 700 nm. The molecular-orbital analysis of the triplet diradical (3)2 suggests that its long-wavelength absorption involves the transition of the unpaired electron from the comparatively localized benzyl-type HOMO to the extensively conjugated benzoyl-type LUMO. The present experimental and theoretical results strongly support the intervention of a long-lived triplet biradical (3)2 in the photochromism of appropriately substituted dibenzobarrelenes.  相似文献   
138.
The fabrication, characterization, and implementation of poly(lipid)-coated, highly luminescent silica nanoparticles as fluorescent probes for labeling of cultured cells are described. The core of the probe is a sol-gel-derived silica nanoparticle, 65-100 nm in diameter, in which up to several thousand dye molecules are encapsulated (Lian, W.; et al. Anal. Biochem. 2004, 334, 135-144). The core is coated with a membrane composed of bis-sorbylphosphatidylcholine, a synthetic polymerizable lipid that is chemically cross-linked to enhance the environmental and chemical stability of the membrane relative to a fluid lipid membrane. The poly(lipid) coating has two major functions: (i) to reduce nonspecific interactions, based on the inherently biocompatible properties of the phosphorylcholine headgroup, and (ii) to permit functionalization of the particle, by doping the coating with lipids bearing chemically reactive or bioactive headgroups. Both functions are demonstrated: (i) Nonspecific adsorption of dissolved proteins to bare silica nanoparticles and of bare nanoparticles to cultured cells is significantly reduced by application of the poly(lipid) coating. (ii) Functionalization of poly(lipid)-coated nanoparticles with a biotin-conjugated lipid creates a probe that can be used to target both dissolved protein receptors as well as receptors on the membranes of cultured cells. Measurements performed on single nanoparticles bound to planar supported lipid bilayers verify that the emission intensity of these probes is significantly greater than that of single protein molecules labeled with several fluorophores.  相似文献   
139.
140.
An array of 2-substituted-4,5-diphenyloxazoles were found to be cleaved to triacylamines and diacylamines (imides) using a reagent system composed of m-chloroperbenzoic acid (MCPBA) and 2,2′-bipyridinium chlorochromate (BPCC). The 2-alkyl-4,5-diphenyloxazoles give imides (38–60%) as the predominant cleavage product while the 2-aryl-4,5-diphenyloxazoles give triacylamines (44–71%). Two mechanisms involving intermediates such as cyclic endoperoxides or oxachromacycles were proposed. An application of the oxidative cleavage to the multi-step synthesis of (±)-phoracantholide I seco acid is detailed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号