首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4646篇
  免费   121篇
  国内免费   16篇
化学   2919篇
晶体学   14篇
力学   237篇
数学   806篇
物理学   807篇
  2023年   50篇
  2022年   142篇
  2021年   136篇
  2020年   110篇
  2019年   98篇
  2018年   83篇
  2017年   93篇
  2016年   188篇
  2015年   144篇
  2014年   139篇
  2013年   249篇
  2012年   265篇
  2011年   293篇
  2010年   174篇
  2009年   151篇
  2008年   284篇
  2007年   272篇
  2006年   227篇
  2005年   240篇
  2004年   164篇
  2003年   161篇
  2002年   113篇
  2001年   51篇
  2000年   48篇
  1999年   44篇
  1998年   32篇
  1997年   32篇
  1996年   53篇
  1995年   45篇
  1994年   37篇
  1993年   35篇
  1992年   29篇
  1991年   28篇
  1990年   29篇
  1989年   30篇
  1988年   29篇
  1987年   39篇
  1986年   23篇
  1985年   39篇
  1984年   38篇
  1983年   19篇
  1982年   22篇
  1981年   26篇
  1980年   27篇
  1979年   19篇
  1978年   16篇
  1977年   28篇
  1975年   16篇
  1974年   13篇
  1858年   11篇
排序方式: 共有4783条查询结果,搜索用时 15 毫秒
91.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism—resulting in its increased uptake—and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.  相似文献   
92.
Considering the growing number of extra virgin olive oil (EVOO) producers in the world, knowing the influence of olive oils with different geographical origins on the characteristics of the final blend becomes an interesting goal. The present work is focused on commercial organic EVOO blends obtained by mixing multiple oils from different geographical origins. These blends have been studied by 1H-NMR spectroscopy supported by multivariate statistical analysis. Specific characteristics of commercial organic EVOO blends originated by mixing oils from Italy, Tunisia, Portugal, Spain, and Greece were found to be associated with the increasing content of the Italian component. A linear progression of the metabolic profile defined characteristics for the analysed samples—up to a plateau level—was found in relation to the content of the main constituent of the Italian oil, the monocultivar Coratina. The Italian constituent percentage appears to be correlated with the fatty acids (oleic) and the polyphenols (tyrosol, hydroxytyrosol, and derivatives) content as major and minor components respectively. These results, which highlight important economic aspects, also show the utility of 1H-NMR associated with chemometric analysis as a powerful tool in this field. Mixing oils of different national origins, to obtain blends with specific characteristics, could be profitably controlled by this methodology.  相似文献   
93.
The luminophore Ru(bpy)2(dcbpy)2+ (bpy=2,2’-bipyridine; dcbpy=4,4’-dicarboxy-2,2’-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)32+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and “free” IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104 s−1) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2⊂NS-RuCh.  相似文献   
94.
Following a previous experiment, an original heteropolycyclic structure 4 was obtained by a reaction of chloroacetyl chloride with compound 3 bearing a conjugated double bond system. The condensation develops with an initial NH-chloroacetylation and ring closure by quaternarization of the pyridine nitrogen. This is achieved through an 1,4 -cycloaddition of chloroketene to make a pyranone ring.  相似文献   
95.
The presence of non-hexagonal rings in the honeycomb carbon arrangement of graphene produces rippled graphene layers with valuable chemical and physical properties. In principle, a bottom-up approach to introducing distortion from planarity of a graphene sheet can be achieved by careful insertion of curved polyaromatic hydrocarbons during the growth of the lattice. Corannulene, the archetype of such non-planar polyaromatic hydrocarbons, can act as an ideal wrinkling motif in 2D carbon nanostructures. Herein we report an electrochemical bottom-up method to obtain egg-box shaped nanographene structures through a polycondensation of corannulene that produces a new conducting layered material. Characterization of this new polymeric material by electrochemistry, spectroscopy, electron microscopy (SEM and TEM), scanning probe microscopy, and laser desorption-ionization time of flight mass spectrometry provides strong evidence that the anodic polymerization of corannulene, combined with electrochemically induced oxidative cyclodehydrogenations (Scholl reactions), leads to polycorannulene with a wavy graphene-like structure.

A bottom-up synthesis of wavy graphene structures obtained through an anodic polymerization process, combined with an electrochemically triggered oxidative cyclodehydrogenation, of the bowl-shaped polyaromatic hydrocarbon corannulene.  相似文献   
96.
Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.  相似文献   
97.
This study focused on the reduction of the treatment cost of mature landfill leachate (LL) by enhancing the coagulation pre-treatment before a UVA-LED photo-Fenton process. A more efficient advanced coagulation pretreatment was designed by combining conventional coagulation (CC) and electro-coagulation (EC). Regardless of the order in which the two coagulations were applied, the combination achieved more than 73% color removal, 80% COD removal, and 27% SUVA removal. However, the coagulation order had a great influence on both final pH and total dissolved iron, which were key parameters for the UVA-LED photo-Fenton post-treatment. CC (pH = 5; 2 g L−1 of FeCl36H2O) followed by EC (pH = 5; 10 mA cm−2) resulted in a pH of 6.4 and 100 mg L−1 of dissolved iron, whereas EC (pH = 4; 10 mA cm−2) followed by CC (pH = 6; 1 g L−1 FeCl36H2O) led to a final pH of 3.4 and 210 mg L−1 dissolved iron. This last combination was therefore considered better for the posterior photo-Fenton treatment. Results at the best cost-efficient [H2O2]:COD ratio of 1.063 showed a high treatment efficiency, namely the removal of 99% of the color, 89% of the COD, and 60% of the SUVA. Conductivity was reduced by 17%, and biodegradability increased to BOD5:COD = 0.40. With this proposed treatment, a final COD of only 453 mg O2 L−1 was obtained at a treatment cost of EUR 3.42 kg COD−1.  相似文献   
98.
The properties of mixtures of two polysaccharides, arabinogalactan (AG) and hyaluronic acid (HA), were investigated in solution by the measurement of diffusion coefficients D of water protons by DOSY (Diffusion Ordered SpectroscopY), by the determination of viscosity and by the investigation of the affinity of a small molecule molecular probe versus AG/HA mixtures in the presence of bovine submaxillary mucin (BSM) by 1HNMR spectroscopy. Enhanced mucoadhesive properties, decreased mobility of water and decreased viscosity were observed at the increase of AG/HA ratio and of total concentration of AG. This unusual combination of properties can lead to more effective and long-lasting hydration of certain tissues (inflamed skin, dry eye corneal surface, etc.) and can be useful in the preparation of new formulations of cosmetics and of drug release systems, with the advantage of reducing the viscosity of the solutions.  相似文献   
99.
Recent explosive growth of ‘make-on-demand’ chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro). This campaign returned a significant number of experimentally confirmed inhibitors of Mpro enzyme, and also enabled to benchmark the performance of twenty-eight hit-selecting strategies of various degrees of stringency and automation. These findings provide new starting scaffolds for hit-to-lead optimization campaigns against Mpro and encourage the development of fully automated end-to-end drug discovery protocols integrating machine learning and human expertise.

Deep learning-accelerated docking coupled with computational hit selection strategies enable the identification of inhibitors for the SARS-CoV-2 main protease from a chemical library of 40 billion small molecules.  相似文献   
100.
A new strategy that takes advantage of the synergism between NMR and UHPLC–HRMS yields accurate concentrations of a high number of compounds in biofluids to delineate a personalized metabolic profile (SYNHMET). Metabolite identification and quantification by this method result in a higher accuracy compared to the use of the two techniques separately, even in urine, one of the most challenging biofluids to characterize due to its complexity and variability. We quantified a total of 165 metabolites in the urine of healthy subjects, patients with chronic cystitis, and patients with bladder cancer, with a minimum number of missing values. This result was achieved without the use of analytical standards and calibration curves. A patient’s personalized profile can be mapped out from the final dataset’s concentrations by comparing them with known normal ranges. This detailed picture has potential applications in clinical practice to monitor a patient’s health status and disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号