Dry aqueous foams made of anionic surfactant (SDS) and spherical gold nanoparticles are studied by small angle X-ray scattering and by optical techniques. To obtain stable foams, the surfactant concentration is well above the critical micelle concentration. The specular reflectivity signal obtained on a very thin film (thickness 20 nm) shows that functionalized nanoparticles (17 nm typical size) are trapped within the film in the form of a single monolayer. In order to isolate the film behavior, investigations are made on a single film confined in a tube. The film thinning according to the ratio of functionalized nanoparticle and SDS micelles (1:1, 1:10, 1:100) is mainly governed by the structural arrangement of SDS micelles. In thick films, nanoparticles tend to form aggregates that disappear during drainage. In particular self-organization of nanoparticles (with different surface charge) inside the film is not detected. 相似文献
We report the unexpected discovery of a tandem active template CuAAC‐rearrangement process, in which N2 is extruded on the way to the 1,2,3‐triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI‐triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated. 相似文献
A high-performance liquid chromatography (HPLC) method was established using an analytical reversed-phase column and gradient
elution to achieve chromatographic separation of typical compounds in essential oils. For detection, a diode array detector
monitoring different wavelengths simultaneously as well as a mass spectrometer (MS) were used. Atmospheric pressure chemical
ionization operating in the positive mode turned out to be a suitable tool to detect volatiles of different chemical classes
and to identify them in essential oil matrices. Characteristic fingerprints of eucalyptus, lavender, may chang, pine, rosemary,
thyme, and turpentine essential oils monitored at a representative wavelength (220 nm) demonstrated the suitability of HPLC
in essential oil analysis. Additional monitoring wavelengths (210, 250, and 280 nm) provided useful information about the
identity of the specific component and opened the possibility to differentiate presumably coeluting compounds by means of
their distinct absorption behavior. Finally, peak assignment in seven essential oils was performed on the basis of characteristic
retention times and UV and MS data of a broad set of reference volatiles. 相似文献
Summary. Rechargeable lithium ion cells operate at voltages of 3.5–4.5 V, which is far beyond the thermodynamic stability window of
the battery electrolyte. Strong electrolyte reduction and anode corrosion has to be anticipated, leading to irreversible loss
of electroactive material and electrolyte and thus strongly deteriorating cell performance. To minimize these reactions, anode
and electrolyte components have to be combined that induce the electrolyte reduction products to form an effectively protecting
film at the anode/electrolyte interface, which hinders further electrolyte decomposition reactions, but acts as membrane for
the lithium cations, i.e. behaving as a solid electrolyte interphase (SEI). This paper focuses on important aspects of the SEI. By using key examples,
the effects of film forming electrolyte additives and the change of the active anode material from carbons to lithium storage
alloys are highlighted.
Received May 30, 2000. Accepted June 14, 2000 相似文献
Journal of Thermal Analysis and Calorimetry - The food-colouring dye tartrazine is a significant additive and in the same time a biologically active material. Thermal behaviour of trisodium... 相似文献
Thermal, thermomechanical, and caloric properties of commercial orthodontic wires (produced by Natural Orthodontics Corp., USA) with cylindrical and rectangular geometry were studied. Depending on the applied forces, there were identified the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force of 18 N is applied, for the orthodontic wires. When increasing the thickness of orthodontic wires, deformation decreases. The Controlled Force Module, in the tension mode, was used for the determination of the orthodontic wires elongation at application of the stretching forces from 0 to 13 N, at 35 °C, maintaining each static force value for 3 min. The increase in the cross-sectional area of the orthodontic wires disfavors the process of elongation of the sample, at the same applied static force. Using the Multi-Frequency–Strain–Stress modulus, in the tension mode, DMA cyclic heating–cooling measurements were performed. The measured physical quantities for orthodontic wires were Storage Modulus, Loss Modulus, Tanδ and Stiffness, at heating and cooling. Thus, the characteristic temperatures of the phase transitions (As, Af, Ms, Mf), of all the studied orthodontic wires were identified. Also, the values of the elasticity modulus (Young’s Modulus) of the orthodontic wires were calculated at 35 °C. With the DSC Q200 device, using temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program, was applied to a rectangular wire, in three stages (cooling–heating–cooling). Through the interpretation of heat fluxes (reversible, irreversible and total), the phase transitions in the formation of martensite, austenite, but also of the rombohedral phase (R-phase), were identified. Formations of austenite and martensite were also evidenced by the classical DSC method, but the classical DSC method also enabled the R-phase identification. The adherence of some food dyes on the orthodontic wires, as well as the modification of the surface roughness of the orthodontic wire after the deposition of the food dye, was also studied. By magnetic measurements, it was established that the orthodontic wires had paramagnetic properties at room temperature, and nitinol was a mixture of 49.2% austenite and 50.8% martensite.
Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF‐TEM high‐resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well with TEM‐derived zeolite locations, while matrix components, such as clay and amorphous binder material, were found not to display activity. Differences in fluorescence intensity were also observed within and between distinct zeolite aggregate domains, indicating that not all zeolite domains are equally active. 相似文献
The D2h‐symmetric dinuclear complex anion [U2F12]2? of pastel green Sr[U2F12] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge‐linked monocapped trigonal prisms, the UV atoms are therefore seven‐coordinated. This leads to a U–U distance of 3.8913(6) Å. A weak UV–UV interaction is observed for the dinuclear [U2F12]2? complex and described by the antiferromagnetic exchange Jexp of circa ?29.9 cm?1. The crystalline compound can be easily prepared from SrF2 and β‐UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X‐ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid‐state quantum chemical calculations. 相似文献