首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2565篇
  免费   177篇
  国内免费   14篇
化学   1868篇
晶体学   7篇
力学   69篇
数学   426篇
物理学   386篇
  2024年   4篇
  2023年   48篇
  2022年   44篇
  2021年   61篇
  2020年   125篇
  2019年   140篇
  2018年   62篇
  2017年   39篇
  2016年   142篇
  2015年   129篇
  2014年   119篇
  2013年   156篇
  2012年   232篇
  2011年   241篇
  2010年   124篇
  2009年   86篇
  2008年   162篇
  2007年   124篇
  2006年   103篇
  2005年   123篇
  2004年   78篇
  2003年   64篇
  2002年   33篇
  2001年   29篇
  2000年   25篇
  1999年   22篇
  1998年   16篇
  1997年   15篇
  1996年   16篇
  1995年   12篇
  1994年   14篇
  1993年   8篇
  1992年   4篇
  1991年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1984年   9篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   11篇
  1977年   6篇
  1975年   9篇
  1973年   5篇
  1971年   4篇
  1967年   5篇
  1963年   5篇
排序方式: 共有2756条查询结果,搜索用时 12 毫秒
71.
Dry aqueous foams made of anionic surfactant (SDS) and spherical gold nanoparticles are studied by small angle X-ray scattering and by optical techniques. To obtain stable foams, the surfactant concentration is well above the critical micelle concentration. The specular reflectivity signal obtained on a very thin film (thickness 20 nm) shows that functionalized nanoparticles (17 nm typical size) are trapped within the film in the form of a single monolayer. In order to isolate the film behavior, investigations are made on a single film confined in a tube. The film thinning according to the ratio of functionalized nanoparticle and SDS micelles (1:1, 1:10, 1:100) is mainly governed by the structural arrangement of SDS micelles. In thick films, nanoparticles tend to form aggregates that disappear during drainage. In particular self-organization of nanoparticles (with different surface charge) inside the film is not detected.  相似文献   
72.
We report the unexpected discovery of a tandem active template CuAAC‐rearrangement process, in which N2 is extruded on the way to the 1,2,3‐triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI‐triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.  相似文献   
73.
A high-performance liquid chromatography (HPLC) method was established using an analytical reversed-phase column and gradient elution to achieve chromatographic separation of typical compounds in essential oils. For detection, a diode array detector monitoring different wavelengths simultaneously as well as a mass spectrometer (MS) were used. Atmospheric pressure chemical ionization operating in the positive mode turned out to be a suitable tool to detect volatiles of different chemical classes and to identify them in essential oil matrices. Characteristic fingerprints of eucalyptus, lavender, may chang, pine, rosemary, thyme, and turpentine essential oils monitored at a representative wavelength (220 nm) demonstrated the suitability of HPLC in essential oil analysis. Additional monitoring wavelengths (210, 250, and 280 nm) provided useful information about the identity of the specific component and opened the possibility to differentiate presumably coeluting compounds by means of their distinct absorption behavior. Finally, peak assignment in seven essential oils was performed on the basis of characteristic retention times and UV and MS data of a broad set of reference volatiles.  相似文献   
74.
75.
Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries   总被引:1,自引:0,他引:1  
Summary.  Rechargeable lithium ion cells operate at voltages of 3.5–4.5 V, which is far beyond the thermodynamic stability window of the battery electrolyte. Strong electrolyte reduction and anode corrosion has to be anticipated, leading to irreversible loss of electroactive material and electrolyte and thus strongly deteriorating cell performance. To minimize these reactions, anode and electrolyte components have to be combined that induce the electrolyte reduction products to form an effectively protecting film at the anode/electrolyte interface, which hinders further electrolyte decomposition reactions, but acts as membrane for the lithium cations, i.e. behaving as a solid electrolyte interphase (SEI). This paper focuses on important aspects of the SEI. By using key examples, the effects of film forming electrolyte additives and the change of the active anode material from carbons to lithium storage alloys are highlighted. Received May 30, 2000. Accepted June 14, 2000  相似文献   
76.
Journal of Thermal Analysis and Calorimetry - The food-colouring dye tartrazine is a significant additive and in the same time a biologically active material. Thermal behaviour of trisodium...  相似文献   
77.

Thermal, thermomechanical, and caloric properties of commercial orthodontic wires (produced by Natural Orthodontics Corp., USA) with cylindrical and rectangular geometry were studied. Depending on the applied forces, there were identified the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force of 18 N is applied, for the orthodontic wires. When increasing the thickness of orthodontic wires, deformation decreases. The Controlled Force Module, in the tension mode, was used for the determination of the orthodontic wires elongation at application of the stretching forces from 0 to 13 N, at 35 °C, maintaining each static force value for 3 min. The increase in the cross-sectional area of the orthodontic wires disfavors the process of elongation of the sample, at the same applied static force. Using the Multi-Frequency–Strain–Stress modulus, in the tension mode, DMA cyclic heating–cooling measurements were performed. The measured physical quantities for orthodontic wires were Storage Modulus, Loss Modulus, Tanδ and Stiffness, at heating and cooling. Thus, the characteristic temperatures of the phase transitions (As, Af, Ms, Mf), of all the studied orthodontic wires were identified. Also, the values of the elasticity modulus (Young’s Modulus) of the orthodontic wires were calculated at 35 °C. With the DSC Q200 device, using temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program, was applied to a rectangular wire, in three stages (cooling–heating–cooling). Through the interpretation of heat fluxes (reversible, irreversible and total), the phase transitions in the formation of martensite, austenite, but also of the rombohedral phase (R-phase), were identified. Formations of austenite and martensite were also evidenced by the classical DSC method, but the classical DSC method also enabled the R-phase identification. The adherence of some food dyes on the orthodontic wires, as well as the modification of the surface roughness of the orthodontic wire after the deposition of the food dye, was also studied. By magnetic measurements, it was established that the orthodontic wires had paramagnetic properties at room temperature, and nitinol was a mixture of 49.2% austenite and 50.8% martensite.

  相似文献   
78.
Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF‐TEM high‐resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well with TEM‐derived zeolite locations, while matrix components, such as clay and amorphous binder material, were found not to display activity. Differences in fluorescence intensity were also observed within and between distinct zeolite aggregate domains, indicating that not all zeolite domains are equally active.  相似文献   
79.
80.
The D2h‐symmetric dinuclear complex anion [U2F12]2? of pastel green Sr[U2F12] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge‐linked monocapped trigonal prisms, the UV atoms are therefore seven‐coordinated. This leads to a U–U distance of 3.8913(6) Å. A weak UV–UV interaction is observed for the dinuclear [U2F12]2? complex and described by the antiferromagnetic exchange Jexp of circa ?29.9 cm?1. The crystalline compound can be easily prepared from SrF2 and β‐UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X‐ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid‐state quantum chemical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号