首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16849篇
  免费   348篇
  国内免费   52篇
化学   9741篇
晶体学   146篇
力学   572篇
数学   2587篇
物理学   4203篇
  2022年   111篇
  2021年   177篇
  2020年   208篇
  2019年   200篇
  2018年   172篇
  2017年   154篇
  2016年   330篇
  2015年   300篇
  2014年   301篇
  2013年   814篇
  2012年   644篇
  2011年   806篇
  2010年   518篇
  2009年   438篇
  2008年   700篇
  2007年   636篇
  2006年   665篇
  2005年   580篇
  2004年   582篇
  2003年   465篇
  2002年   476篇
  2001年   354篇
  2000年   312篇
  1999年   236篇
  1998年   207篇
  1997年   210篇
  1996年   259篇
  1995年   228篇
  1994年   219篇
  1993年   260篇
  1992年   275篇
  1991年   256篇
  1990年   212篇
  1989年   184篇
  1988年   217篇
  1987年   251篇
  1986年   218篇
  1985年   274篇
  1984年   263篇
  1983年   223篇
  1982年   243篇
  1981年   246篇
  1980年   236篇
  1979年   240篇
  1978年   233篇
  1977年   230篇
  1976年   214篇
  1975年   209篇
  1974年   181篇
  1973年   177篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
191.
This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.  相似文献   
192.
The control of dewetting for thin polymer films is a technical challenge and of significant academic interest. We have used polystyrene nanoparticles to inhibit dewetting of high molecular weight, linear polystyrene, demonstrating that molecular architecture has a unique effect on surface properties. Neutron reflectivity measurements were used to demonstrate that the nanoparticles were uniformly distributed in the thin (ca. 40 nm) film prior to high temperature annealing, yet after annealing, they were found to separate to the solid substrate, a silanized silicon wafer. Dewetting was eliminated when the nanoparticles separated to form a monolayer or above while below this surface coverage the dewetting dynamics was severely retarded. Blending linear polystyrene of similar molecular weight to the polystyrene nanoparticle with the high molecular weight polystyrene did not eliminate dewetting.  相似文献   
193.
Layer-by-layer (LbL) thin film assembly occurs via the alternate adsorption of positively and negatively charged macromolecular species. We investigate here the control of LbL film growth through the electric potential of the underlying substrate. We employ optical waveguide lightmode spectroscopy (OWLS) to obtain in situ kinetic measurements of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) and poly(L-lysine)/dextran sulfate (PLL/DXS) multilayer film formation in the presence of an applied voltage difference (deltaV) between the adsorbing substrate, an indium tin oxide- (ITO-) coated waveguiding sensor chip, and a parallel platinum counterelectrode. We find initial layer adsorption to be significantly enhanced by an applied potential for both polyelectrolyte systems: the mass and thickness of (positively charged) PAH and PLL layers on ITO are about 60% and 500% larger, respectively, at deltaV = 2 V than at open circuit potential (OCP), in apparent violation of electrostatics. A kinetic analysis reveals the initial attachment rate constant to decrease with voltage, in agreement with electrostatics. To reconcile these results, we propose a more coiled and loosely bound adsorbed polymer conformation at higher applied potential. Following 10 adsorption steps, the mass and thickness of a PAH/PSS film grown under deltaV = 2 V are about 15% less than those of a comparable film grown under OCP, reflecting a lower degree of complexation between adsorbing polyanions and more highly coiled adsorbed polycations. Following 14 adsorption steps, the mass and thickness of a PLL/DXS film grown under deltaV = 2 V are about 70% greater than those of a comparable film grown under OCP, reflecting the increased charge overcompensation in the initial layer. We find the scaling of film mass () with the number of adsorption steps (n) to be linear in the PAH/PSS system and exponential (i.e., approximately eyn) in the PLL/DXS system, irrespective of applied voltage. We observe to decrease with applied voltage and to exhibit a crossover to a smaller value around n = 5. Extrapolation reveals PLL/DXS multilayer films to be suppressed by increased voltage in the limit of large n: the mass of films grown at OCP and deltaV = 1 V would surpass that of a film grown under deltaV = 2 V at about the 23rd and 18th adsorption steps, respectively. The formation kinetics of PLL/DXS, but not PAH/PSS, change qualitatively under voltage: PLL adsorption is slow to reach a plateau, possibly due to the formation of secondary structure, and a decrease in film mass occurs toward the end of each DXS adsorption step, suggesting spontaneous removal of some PLL/DXS complexes from the film.  相似文献   
194.
Expansion coefficients , isothermal compressibilities, thermal pressure coefficients and heat capacities have been measured at 25°C for the cyclohexane+trans-decalin system. An S-shaped composition dependence, positivelnegative for highllow cyclohexane compositions is found for C p E dV E /dT and the thermal expansion contribution to C p E namely VT. The thermal motion contribution to C p E , namely C v is close to zero. The positive excursion of these mixing quantities at high cyclohexane content is anomalous. Correspondingly, the mixing quantity-VT deviates strongly in this region from the predicted equality with H E . The literature and this work show that all these excess quantities behave similarly for cyclohexane mixed with cyclooctane, methylcyclohexane and some highly branched alkanes. The unusual composition dependence of the thermodynamic quantities is consistent with order occurring when any large alkane molecule of globular shape is added to cyclohexane. This is speculatively associated with an interference by the globular alkane with the relatively free rotation of cyclohexane molecules.  相似文献   
195.
The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 × 10−6 K−1 and the mean uniaxial thermal expansion coefficient is 71.4 × 10−6 K−1, based on 745 and 1129 different observations, respectively. Normal and anomalous coefficients can be identified using these values and the associated standard deviations. The anisotropy of the thermal expansion is also evaluated and found to have a very broad distribution. 4719 different structures, comprising 4093 different molecular compounds and 626 additional polymorphs have been analyzed on their thermal expansion properties. Approximately 34% of these structures may have at least one orthogonal axis with negative thermal expansion, much more than generally believed. Moreover 127 structures have been identified which could have negative volumetric thermal expansion. Experimental validation using a robust protocol with data collected at more than 2 different temperatures is required to validate these cases.

The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). Negative uniaxial thermal expansion is much more common than generally believed.  相似文献   
196.
A Role for Neuropeptides in UVB-Induced Systemic Immunosuppression   总被引:1,自引:0,他引:1  
The aim of this study was to investigate the possible role of sensory nerves in UV light-induced systemic immunomodulation. Contact hypersensitivity to the low molecular weight compound picrylchloride was used as a model for cellular immunity that can be suppressed by low (i.e. suberythemal) doses of UV light even after exposure at a distant locus (i.e. systemic immunosuppression). In sensory nerve-depleted mice, achieved by two subcutaneous injections with the neurotoxin capsaicin before the age of 4 weeks, UV light exposure failed to inhibit contact hypersensitivity responses to picrylchloride. This indicates that sensory nerves are at least partially involved in the induction of systemic immunosuppression by UV light. In order to analyze whether sensory neuropeptides, such as calcitonin gene-related peptide (CGRP) and tachykinins, are involved in UV light-induced systemic immunosuppression, mice were pretreated with selective antagonists prior to each UV light exposure. These experiments indicated that CGRP but not the tachykinins plays a crucial role in the UV light-induced systemic immunosuppression.  相似文献   
197.
A novel method to produce solution-phase triangular silver nanoparticles is presented. Ag nanoparticles are prepared by nanosphere lithography and are subsequently released into solution. The resulting nanoparticles are asymmetrically functionalized to produce either single isolated nanoparticles or dimer pairs. The structural and optical properties of Ag nanoparticles have been characterized. Mie theory and the Discrete Dipole Approximation method (DDA) have been used to model and interpret the optical properties of the released Ag nanoparticles.  相似文献   
198.
We present the ab initio potential-energy surfaces of the NH-NH complex that correlate with two NH molecules in their 3sigma- electronic ground state. Three distinct potential-energy surfaces, split by exchange interactions, correspond to the coupling of the S(A) = 1 and S(B) = 1 electronic spins of the monomers to dimer states with S = 0, 1, and 2. Exploratory calculations on the quintet (S = 2), triplet (S = 1), and singlet (S = 0) states and their exchange splittings were performed with the valence bond self-consistent-field method that explicitly accounts for the nonorthogonality of the orbitals on different monomers. The potential surface of the quintet state, which can be described by a single Slater determinant reference function, was calculated at the coupled cluster level with single and double excitations and noniterative treatment of the triples. The triplet and singlet states require multiconfiguration reference wave functions and the exchange splittings between the three potential surfaces were calculated with the complete active space self-consistent-field method supplemented with perturbative configuration interaction calculations of second and third orders. Full potential-energy surfaces were computed as a function of the four intermolecular Jacobi coordinates, with an aug-cc-pVTZ basis on the N and H atoms and bond functions at the midpoint of the intermolecular vector R. An analytical representation of these potentials was given by expanding their dependence on the molecular orientations in coupled spherical harmonics, and representing the dependence of the expansion coefficients on the intermolecular distance R by the reproducing kernel Hilbert space method. The quintet surface has a van der Waals minimum of depth D(e) = 675 cm(-1) at R(e) = 6.6a0 for a linear geometry with the two NH electric dipoles aligned. The singlet and triplet surfaces show similar, slightly deeper, van der Waals wells, but when R is decreased the weakly bound NH dimer with S = 0 and S = 1 converts into the chemically bound N2H2 diimide (also called diazene) molecule with only a small energy barrier to overcome.  相似文献   
199.
This work describes a simple, versatile solid-phase peptide-synthesis (SPPS) method for preparing micelle-forming poly(ethylene oxide)-block-peptide block copolymers for drug delivery. To demonstrate its utility, this SPPS method was used to construct two series of micelle-forming block copolymers (one of constant core-composition and variable length; the other of constant core length and variable composition). The block copolymers were then used to study in detail the effect of size and composition on micellization. The various block copolymers were prepared by a combination of SPPS for the peptide block, followed by solution–phase conjugation of the peptide block with a proprionic acid derivative of poly(ethylene oxide) (PEO) to form the PEO-b-peptide block copolymer. The composition of each block component was characterized by mass spectrometry (MALDI and ES-MS). Block copolymer compositions were characterized by 1H NMR. All the block copolymers were found to form micelles as judged by transmission electron microscopy (TEM) and light scattering analysis. To demonstrate their potential as drug delivery systems, micelles prepared from one member of the PEO-b-peptide block copolymer series were physically loaded with the anticancer drug doxorubicin (DOX). Micelle static and dynamic stability were found to correlate strongly with micelle core length. In contrast, these same micellization properties appear to be a complex function of core composition, and no clear trends could be identified from among the set of compositionally varying, fixed length block copolymer micelles. We conclude that SPPS can be used to construct biocompatible block copolymers with well-defined core lengths and compositions, which in turn can be used to study and to tailor the behavior of block copolymer micelles.  相似文献   
200.
The in vivo pharmacokinetics of protoporphyrin IX (PpIX) after administration of 5-aminolevulinic acid (ALA) cannot be described accurately by mathematical models using first-order rate processes. We have replaced first-order reaction rates by dose-dependent (Michaelis-Menten [MM]) reaction rates in a mathematical compartment model. Different combinations of first-order and dose-dependent reaction rates were evaluated to see which one would improve the goodness-of-fit to experimentally determined in vivo PpIX fluorescence kinetics as a function of concentration. The mathematical models that were evaluated are all based on a three-compartment model for drug distribution, conversion to PpIX and subsequent conversion to heme. Implementation of dose-dependent reaction rates improved the goodness-of-fit and enabled interpolation to other drug doses. For most data sets the time constant for delivery to the target cells turned out to be dose dependent. For all data sets the use of MM rates for the conversion of ALA to PpIX yielded better fits. The clearance of PpIX turned out to be a first-order process for all doses and types of administration. Fluorescence curves measured on a specific tissue type but obtained in different studies with different measurement techniques could be described with a single set of parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号